Mitochondrial Genome of Prasinophyte Alga Pyramimonas parkeae.

J Eukaryot Microbiol

Department of Parasitology, Faculty of Science, Charles University, Prague, 128 43, Czech Republic.

Published: May 2017

Prasinophytes are a paraphyletic assemblage of nine heterogeneous lineages in the Chlorophyta clade of Archaeplastida. Until now, seven complete mitochondrial genomes have been sequenced from four prasinophyte lineages. Here, we report the mitochondrial genome of Pyramimonas parkeae, the first representative of the prasinophyte clade I. The circular-mapping molecule is 43,294 bp long, AT rich (68.8%), very compact and it comprises two 6,671 bp long inverted repeat regions. The gene content is slightly smaller than the gene-richest prasinophyte mitochondrial genomes. The single identified intron is located in the cytochrome c oxidase subunit 1 gene (cox1). Interestingly, two exons of cox1 are encoded on the same strand of DNA in the reverse order and the mature mRNA is formed by trans-splicing. The phylogenetic analysis using the data set of 6,037 positions assembled from 34 mtDNA-encoded proteins of 48 green algae and plants is not in compliance with the branching order of prasinophyte clades revealed on the basis of 18S rRNA genes and cpDNA-encoded proteins. However, the phylogenetic analyses based on all three genomic elements support the sister position of prasinophyte clades Pyramimonadales and Mamiellales.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jeu.12371DOI Listing

Publication Analysis

Top Keywords

mitochondrial genome
8
pyramimonas parkeae
8
mitochondrial genomes
8
prasinophyte clades
8
prasinophyte
6
mitochondrial
4
genome prasinophyte
4
prasinophyte alga
4
alga pyramimonas
4
parkeae prasinophytes
4

Similar Publications

Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.

View Article and Find Full Text PDF

Background: The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in non-human species and recently demonstrated to occur in rare instances from one human generation to the next.

Method: Here we investigated numtogenesis dynamics in humans in two ways. First, we quantified Numts in 1,187 post-mortem brain and blood samples from different individuals.

View Article and Find Full Text PDF

Background: Mitochondria are organelles where energy production takes place via oxidative phosphorylation, thus mitochondrial function influences the organs with large energy consumption, such as the brain. Mitochondria contain their own circular genome (mtDNA), which encodes essential proteins/RNAs involved in oxidative phosphorylation. The maternal inheritance of mtDNA, combined with a higher risk of Alzheimer's disease (AD) observed in females, suggest mtDNA may have a role in AD.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction and Aβ accumulation are hallmarks of Alzheimer's disease (AD). However, the role of these pathologies in Down Syndrome associated Alzheimer's Disease (DSAD) is unknown. Decades of research describe a relationship between mitochondrial function and Aβ production.

View Article and Find Full Text PDF

Background: Activation of the mTOR pathway is pivotal for microglia to induce and sustain neuroprotective functions (Ulland et al., 2017; Wang et al., 2022).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!