A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hidden diversity of Acoelomorpha revealed through metabarcoding. | LitMetric

Hidden diversity of Acoelomorpha revealed through metabarcoding.

Biol Lett

Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

Published: September 2016

Animals with bilateral symmetry comprise the majority of the described species within Metazoa. However, the nature of the first bilaterian animal remains unknown. As most recent molecular phylogenies point to Xenacoelomorpha as the sister group to the rest of Bilateria, understanding their biology, ecology and diversity is key to reconstructing the nature of the last common bilaterian ancestor (Urbilateria). To date, sampling efforts have focused mainly on coastal areas, leaving potential gaps in our understanding of the full diversity of xenacoelomorphs. We therefore analysed 18S rDNA metabarcoding data from three marine projects covering benthic and pelagic habitats worldwide. Our results show that acoels have a greater richness in planktonic environments than previously described. Interestingly, we also identified a putative novel clade of acoels in the deep benthos that branches as sister group to the rest of Acoela, thus representing the earliest-branching acoel clade. Our data highlight deep-sea environments as an ideal habitat to sample acoels with key phylogenetic positions, which might be useful for reconstructing the early evolution of Bilateria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5046940PMC
http://dx.doi.org/10.1098/rsbl.2016.0674DOI Listing

Publication Analysis

Top Keywords

sister group
8
group rest
8
hidden diversity
4
diversity acoelomorpha
4
acoelomorpha revealed
4
revealed metabarcoding
4
metabarcoding animals
4
animals bilateral
4
bilateral symmetry
4
symmetry comprise
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!