Unlabelled: Anthrax is a zoonotic disease that occurs naturally in wild and domestic animals but has been used by both state-sponsored programs and terrorists as a biological weapon. A Soviet industrial production facility in Sverdlovsk, USSR, proved deficient in 1979 when a plume of spores was accidentally released and resulted in one of the largest known human anthrax outbreaks. In order to understand this outbreak and others, we generated a Bacillus anthracis population genetic database based upon whole-genome analysis to identify all single-nucleotide polymorphisms (SNPs) across a reference genome. Phylogenetic analysis has defined three major clades (A, B, and C), B and C being relatively rare compared to A. The A clade has numerous subclades, including a major polytomy named the trans-Eurasian (TEA) group. The TEA radiation is a dominant evolutionary feature of B. anthracis, with many contemporary populations having resulted from a large spatial dispersal of spores from a single source. Two autopsy specimens from the Sverdlovsk outbreak were deep sequenced to produce draft B. anthracis genomes. This allowed the phylogenetic placement of the Sverdlovsk strain into a clade with two Asian live vaccine strains, including the Russian Tsiankovskii strain. The genome was examined for evidence of drug resistance manipulation or other genetic engineering, but none was found. The Soviet Sverdlovsk strain genome is consistent with a wild-type strain from Russia that had no evidence of genetic manipulation during its industrial production. This work provides insights into the world's largest biological weapons program and provides an extensive B. anthracis phylogenetic reference.
Importance: The 1979 Russian anthrax outbreak resulted from an industrial accident at the Soviet anthrax spore production facility in the city of Sverdlovsk. Deep genomic sequencing of two autopsy specimens generated a draft genome and phylogenetic placement of the Soviet Sverdlovsk anthrax strain. While it is known that Soviet scientists had genetically manipulated Bacillus anthracis with the potential to evade vaccine prophylaxis and antibiotic therapeutics, there was no genomic evidence of this from the Sverdlovsk production strain genome. The whole-genome SNP genotype of the Sverdlovsk strain was used to precisely identify it and its close relatives in the context of an extensive global B. anthracis strain collection. This genomic identity can now be used for forensic tracking of this weapons material on a global scale and for future anthrax investigations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5050339 | PMC |
http://dx.doi.org/10.1128/mBio.01501-16 | DOI Listing |
Am J Trop Med Hyg
January 2025
MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda.
Between April and November 2023, 27 unexplained human deaths that presented with swelling of the arms, skin sores with black centers, difficulty in breathing, obstructed swallowing, headaches, and other body aches were reported in Kyotera District, Uganda by the Public Health Emergency Operations Center. Subsequently, the death of cattle on farms and the consumption of carcass meat by some residents were also reported. Field response teams collected clinical/epidemiological data and autopsy samples to determine the cause of deaths.
View Article and Find Full Text PDFMicroorganisms
December 2024
Targeted Therapy Team, Institute for Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions.
View Article and Find Full Text PDFImmunol Rev
January 2025
Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.
Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation.
View Article and Find Full Text PDFElectrophoresis
January 2025
National Institute for Nuclear, Chemical and Biological Protection, Kamenna, Czech Republic.
Timely identification of highly pathogenic bacteria is crucial for efficient mitigation of the connected harmful health effects. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of intact cells enables fast identification of the microorganisms based on their mass spectrometry protein fingerprint profiles. However, the MALDI-TOF MS examination must be preceded by a time-demanding cultivation of the native bacteria to isolate representative cell samples to obtain indicative fingerprints.
View Article and Find Full Text PDFPLoS Negl Trop Dis
December 2024
Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America.
Bacillus cereus biovar anthracis (Bcbva) causes anthrax-like disease in animals, particularly in the non-human primates and great apes of West and Central Africa. Genomic analyses revealed Bcbva as a member of the B. cereus species that carries two plasmids, pBCXO1 and pBCXO2, which have high sequence homology to the B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!