Background: Malignant melanoma is a fast growing form of skin cancer with increasing global incidence. Clinically, canine malignant melanoma and human melanoma share comparable treatment-resistances, metastatic phenotypes and site selectivity.
Objective: Both interferon-β (IFNβ) and bortezomib (BTZ) display inhibitory activities on melanoma cells. Here, we evaluated the cytotoxic effects of the combination of BTZ and IFNβ gene lipofection on cultured melanoma cell lines.
Method: Cell viability determined by the acid phosphatase method, cell migration mesasured by the wound healing assay, DNA fragmentation and cell cycle by flow cytometry after propidium iodide staining and reactive oxygen species (ROS) production by H2DCF-DA fluorescence.
Results: Four canine mucosal (Ak, Br, Bk and Ol) and two human dermal (A375 and SB2) melanoma cell lines were assayed. BTZ sub-pharmacological concentrations (5 nM) enhanced the cytotoxic effects of IFNβ transgene expression on melanoma cells monolayers and spheroids. The combination was also more effective than the single treatments when assayed for clonogenic survival and cell migration. The combined treatment produced a significant raise of apoptosis evidenced by DNA fragmentation as compared to either BTZ or IFNβ gene lipofection single treatments. Furthermore, BTZ significantly increased the intracellular ROS generation induced by IFNβ gene transfer in melanoma cells, an effect that was reversed by the addition of the ROS inhibitor N-acetyl-L-cystein.
Conclusion: The present work encourages further studies about the potential of the combination of interferon gene transfer with proteasome inhibitors as a new combined therapy for malignant melanoma, both in veterinary and/or human clinical settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871520616666160923103849 | DOI Listing |
FEBS J
January 2025
Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada.
In this study, we explored the intricate relationship between Pannexin 1 (PANX1) and the Hippo signaling pathway effector, Yes-associated protein (YAP). Analysis of The Cancer Genome Atlas (TCGA) data revealed a significant positive correlation between PANX1 mRNA and core Hippo components, Yes-associated protein 1 [YAP], Transcriptional coactivator with PDZ-binding motif [TAZ], and Hippo scaffold, Ras GTPase-activating-like protein IQGAP1 [IQGAP1], in invasive cutaneous melanoma and breast carcinoma. Furthermore, we demonstrated that PANX1 expression is upregulated in invasive melanoma cell lines and is associated with increased YAP protein levels.
View Article and Find Full Text PDFClin Cancer Res
December 2024
Baylor University Medical Center, Dallast, Texas, United States.
Purpose: Brentuximab vedotin (BV) is hypothesized to selectively deplete T regulatory cells (Tregs) that express CD30 and re-sensitize tumors to anti-(PD-1) therapy. This study evaluated responses to BV+pembrolizumab post PD-1 and explored corresponding biomarkers.
Methods: 55 patients with metastatic non-small cell lung cancer (NSCLC) and 58 with metastatic cutaneous melanoma received ≥1 dose of BV+pembrolizumab.
Alzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA; NYU, New York City, NY, USA.
Background: Astrocytes, a major glial cell in the central nervous system (CNS), can become reactive in response to inflammation or injury, and release toxic factors that kill specific subtypes of neurons. Over the past several decades, many groups report that reactive astrocytes are present in the brains of patients with Alzheimer's disease, as well as several other neurodegenerative diseases. In addition, reactive astrocyte sub-types most associated with these diseases are now reported to be present during CNS cancers of several types.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China.
Background: Melanoma, a malignant neoplasm originating from melanocytes, is a form of skin cancer with rapidly increasing global incidence, often exacerbated by UV radiation[1]. Particularly, acral melanoma, characterized by its swift metastasis and poor prognosis, underscores the significance of further research into its heterogeneity. Single-cell sequencing has been widely utilized in the study of tumor heterogeneity; however, research related to melanoma remains to be further refined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!