Fabrication of Hollow Materials by Fast Pyrolysis of Cellulose Composite Fibers with Heterogeneous Structures.

Angew Chem Int Ed Engl

Department of Chemistry and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, China.

Published: October 2016

A facile method for the fabrication of inorganic hollow materials from cuprammonium cellulose composite filaments based on fast pyrolysis has been developed. Unlike Ostwald ripening, approaches based on the Kirkendall effect, and other template methods, this process yielded hollow materials within 100 s. The heterogeneous structure of the cellulose composite fibers and the gradient distribution of the metal oxides are the main reasons for the formation of the hollow structure. The diameter, wall thickness, and length of the hollow microfibers could be conveniently controlled. With their perfect morphology, these hollow structural materials have great potential for use in various fields.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201607455DOI Listing

Publication Analysis

Top Keywords

hollow materials
12
cellulose composite
12
fast pyrolysis
8
composite fibers
8
hollow
5
fabrication hollow
4
materials
4
materials fast
4
pyrolysis cellulose
4
fibers heterogeneous
4

Similar Publications

Intrinsic low conductivity, poor structural stability, and narrow interlayer spacing limit the development of MnO in sodium-ion (Na) supercapacitors. This work constructs the hollow cubic Mn-PBA precursor through an ion-exchange process to in situ obtain a hollow cubic H-Ni-MnO composite with Ni doping and oxygen vacancies (O) via a self-oxidation strategy. Experiments and theoretical calculations show that the hollow nanostructure and the expanding interlayer spacing induced by Ni doping are beneficial for exposing more reactive sites, synergistically manipulating the Na transport pathways.

View Article and Find Full Text PDF

Efficient Electrosynthesis of Hydrogen Peroxide Enabled by a Hierarchical Hollow RE-P-O (RE = Sm, La, Gd) Architecture with Open Channels.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China.

The electrochemical two-electron oxygen reduction reaction (2e ORR) offers a sustainable pathway for the production of HO; however, the development of electrocatalysts with exceptional activity, selectivity, and long-term stability remains a challenging task. Herein, a novel approach is presented to addressing this challenge by synthesizing hierarchical hollow SmPO nanospheres with open channels via a two-step hydrothermal treatment. The produced compound demonstrates remarkable 2e selectivity, exceeding 93% across a wide potential range of 0.

View Article and Find Full Text PDF

Experimental research on remote non-contact laser vibration measurement for tunnel lining cavities.

Sci Rep

January 2025

State Key Laboratory of Mountain Bridge and Tunnel Engineering, College of Civil Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.

The lining cavities in tunnels have strong concealment and pose significant risks, seriously affecting tunnel operational safety. Therefore, it is necessary to develop efficient and high-precision detection techniques for tunnel lining cavities. In this study, concrete slabs with different parameter cavities were selected as the research object, and experiments on remote detection using Laser Doppler Vibrometry were conducted.

View Article and Find Full Text PDF

Multiscale integral synchronous assembly of cuttlebone-inspired structural materials by predesigned hydrogels.

Nat Commun

January 2025

Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.

The overall structural integrity plays a vital role in the unique performance of living organisms, but the integral synchronous preparation of different multiscale architectures remains challenging. Inspired by the cuttlebone's rigid cavity-wall structure with excellent energy absorption, we develop a robust hierarchical predesigned hydrogel assembly strategy to integrally synchronously assemble multiple organic and inorganic micro-nano building blocks to different structures. The two types of predesigned hydrogels, combined with hydrogen, covalent bonding, and electrostatic interactions, are layer-by-layer assembled into brick-and-mortar structures and close-packed rigid micro hollow structures in a cuttlebone-inspired structural material, respectively.

View Article and Find Full Text PDF

Facile universal strategy of presenting multifunctional short peptides for customizing desired surfaces.

J Nanobiotechnology

January 2025

Department of Spinal Surgery, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, Zhejiang, 317500, China.

Article Synopsis
  • Interfacial properties of biomaterials influence critical functions like cell adhesion and tissue repair, making their manipulation essential for clinical applications.
  • The study develops a versatile layer-by-layer (LbL) strategy to effectively attach peptides to substrates using polyphenols, enhancing interfacial functionalities.
  • The resulting peptide-polyphenol coatings demonstrate broad applicability, stability, and the ability to incorporate various functional molecules for improved biomaterial performance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!