We have developed a scalable fabrication process for the production of DNA biosensors based on gold nanoparticle-decorated graphene field effect transistors (AuNP-Gr-FETs), where monodisperse AuNPs are created through physical vapor deposition followed by thermal annealing. The FETs are created in a four-probe configuration, using an optimized bilayer photolithography process that yields chemically clean devices, as confirmed by XPS and AFM, with high carrier mobility (3590 ± 710 cm/V·s) and low unintended doping (Dirac voltages of 9.4 ± 2.7 V). The AuNP-Gr-FETs were readily functionalized with thiolated probe DNA to yield DNA biosensors with a detection limit of 1 nM and high specificity against noncomplementary DNA. Our work provides a pathway toward the scalable fabrication of high-performance AuNP-Gr-FET devices for label-free nucleic acid testing in a realistic clinical setting.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b09238DOI Listing

Publication Analysis

Top Keywords

graphene field
8
field transistors
8
scalable fabrication
8
dna biosensors
8
scalable production
4
production sensor
4
sensor arrays
4
arrays based
4
based high-mobility
4
high-mobility hybrid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!