A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-Pressure Reactivity of Triptycene Probed by Raman Spectroscopy. | LitMetric

High-Pressure Reactivity of Triptycene Probed by Raman Spectroscopy.

J Phys Chem B

Department of Chemistry, ‡Department of Physics, §Department of Materials Science and Engineering, ⊥Materials Research Institute, ∥Department of Energy & Mineral Engineering, Department of Chemical Engineering, and EMS Energy Institute, Pennsylvania State University , University Park, Pennsylvania 16802, United States.

Published: October 2016

The high-pressure reactivity of caged olefinic carbons and polyatomic aromatic hydrocarbons (PAHs) are of interest because of their ability to produce unique C-H networks with varying geometries and bonding environments. Here, we have selected triptycene to explore the creation of pores via high-pressure polymerization. Triptycene has internal free volume on a molecular scale that arises due to its paddle wheel-like structure, formed via fusion of three benzene rings via sp-hybridized bridgehead carbon sites. At 25 GPa and 298 K, triptycene polymerizes to yield an amorphous hydrogenated carbon, with FTIR indicating an sp C-H content of approximately 40%. Vibrational spectroscopy conclusively demonstrates that triptycene polymerizes via cycloaddition reactions at the aromatic sites via a ring opening mechanism. The bridgehead carbons remain intact after polymerization, indicating the rigid backbone of the triptycene precursor is retained in the polymer, as well as molecular-level (∼1-3 Å) internal free volume. High resolution transmission electron microscopy, combined with dark field imaging, indicates the presence of ∼10 nm voids in the polymer, which we attribute to either polymeric clustering or a hierarchical tertiary porous network. Creation of a polymerized network that retains internal voids via high-pressure polymerization is attributed to the presence and retention of the bridgehead carbons.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.6b05120DOI Listing

Publication Analysis

Top Keywords

high-pressure reactivity
8
high-pressure polymerization
8
internal free
8
free volume
8
triptycene polymerizes
8
bridgehead carbons
8
triptycene
6
high-pressure
4
reactivity triptycene
4
triptycene probed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!