The effects of metal ion exposure on osteocytes, the most abundant cell type in bone and responsible for coordinating bone remodeling, remain unclear. However, several studies have previously shown that exposure to cobalt (Co ) and chromium (Cr ), at concentrations equivalent to those found clinically, affect osteoblast and osteoclast survival and function. In this study, we tested the hypothesis that metal ions would similarly impair the normal physiology of osteocytes. The survival, dendritic morphology, and response to fluid shear stress of the mature osteocyte-like cell-line MLO-Y4 following exposure to clinically relevant concentrations and combinations of Co and Cr ions were measured in 2D-culture. Exposure of MLO-Y4 cells to metal ions reduced cell number, increased dendrites per cell and increased dendrite length. We found that combinations of metal ions had a greater effect than the individual ions alone, and that Co had a predominate effect on changes to cell numbers and dendrites. Combined metal ion exposure blunted the responses of the MLO-Y4 cells to fluid shear stress, including reducing the intracellular calcium responses and modulation of genes for the osteocyte markers Cx43 and Gp38, and the signaling molecules RANKL and Dkk-1. Finally, we demonstrated that in the late osteoblasts/early osteocytes cell line MLO-A5 that Co exposure had no effect on mineralization, but Cr treatment inhibited mineralization in a dose-dependent manner, without affecting cell viability. Taken together, these data indicate that metal exposure can directly affect osteocyte physiology, with potential implications for bone health including osseointegration of cementless components, and periprosthetic bone remodeling. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1716-1723, 2017.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603770 | PMC |
http://dx.doi.org/10.1002/jor.23449 | DOI Listing |
Int J Numer Method Biomed Eng
January 2025
Department of Cardiology, First Medical Center, General Hospital of Chinese people's Liberation Army, Beijing, China.
The intra-aortic balloon pump (IABP) is a widely-used mechanical circulatory support device that enhances hemodynamics in patients with heart conditions. Although the IABP is a common clinical tool, its effectiveness in enhancing outcomes for patients with acute myocardial infarction and cardiogenic shock remains disputed. This study aimed to assess the effectiveness of intra-aortic dual-balloon pump (IADBP) and its impact on aortic hemodynamics compared with an IABP.
View Article and Find Full Text PDFScience
January 2025
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
Architected materials derive their properties from the geometric arrangement of their internal structural elements. Their designs rely on continuous networks of members to control the global mechanical behavior of the bulk. In this study, we introduce a class of materials that consist of discrete concatenated rings or cage particles interlocked in three-dimensional networks, forming polycatenated architected materials (PAMs).
View Article and Find Full Text PDFSoft Matter
January 2025
Politecnico di Milano, 20133 Milano, Italy.
Identical, inelastic spheres crystallize when sheared between two parallel, bumpy planes under a constant load larger than a minimum value. We investigate the effect of the inter-particle friction coefficient of the sheared particles on the flow dynamics and the crystallization process with discrete element simulations. If the imposed load is about the minimum value to observe crystallization in frictionless spheres, adding small friction to the granular assembly results in a shear band adjacent to one of the planes and one crystallized region, where a plug flow is observed.
View Article and Find Full Text PDFJ Food Sci
January 2025
College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China.
Flaxseed gum (FSG) has promising applications in the field of nano/microencapsulation for its biocompatibility and excellent physicochemical properties. In this study, FSG-based nano-microcapsules (FSG NPs) were prepared using high-speed shear homogenization combined with ultrasound for efficient encapsulation of secoisolariciresinol diglucoside (SDG). The particle size of FSG stands for nano-microcapsules (NP) was determined to be 336.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
FLOW, Department of Engineering Mechanics, KTH, Stockholm, Sweden.
Biofilms constitute one of the most common forms of living matter, playing an increasingly important role in technology, health, and ecology. While it is well established that biofilm growth and morphology are highly dependent on the external flow environment, the precise role of fluid friction has remained elusive. We grew Bacillus subtilis biofilms on flat surfaces of a channel in a laminar flow at wall shear stresses spanning one order of magnitude (τ = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!