Quantum mechanics builds large-scale graphs (networks): the vertices are the discrete energy levels the quantum system possesses, and the edges are the (quantum-mechanically allowed) transitions. Parts of the complete quantum mechanical networks can be probed experimentally via high-resolution, energy-resolved spectroscopic techniques. The complete rovibronic line list information for a given molecule can only be obtained through sophisticated quantum-chemical computations. Experiments as well as computations yield what we call spectroscopic networks (SN). First-principles SNs of even small, three to five atomic molecules can be huge, qualifying for the big data description. Besides helping to interpret high-resolution spectra, the network-theoretical view offers several ideas for improving the accuracy and robustness of the increasingly important information systems containing line-by-line spectroscopic data. For example, the smallest number of measurements necessary to perform to obtain the complete list of energy levels is given by the minimum-weight spanning tree of the SN and network clustering studies may call attention to "weakest links" of a spectroscopic database. A present-day application of spectroscopic networks is within the MARVEL (Measured Active Rotational-Vibrational Energy Levels) approach, whereby the transitions information on a measured SN is turned into experimental energy levels via a weighted linear least-squares refinement. MARVEL has been used successfully for 15 molecules and allowed to validate most of the transitions measured and come up with energy levels with well-defined and realistic uncertainties. Accurate knowledge of the energy levels with computed transition intensities allows the realistic prediction of spectra under many different circumstances, e.g., for widely different temperatures. Detailed knowledge of the energy level structure of a molecule coming from a MARVEL analysis is important for a considerable number of modeling efforts in chemistry, physics, and engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.6b02293 | DOI Listing |
Semin Oncol Nurs
January 2025
Nursing Department, Cyprus University of Technology, Limassol, Cyprus.
Objectives: Cancer-related cachexia affects approximately 50% to 80% of cancer patients and contributes significantly to cancer-related mortality, accounting for 20% of deaths. This multifactorial syndrome is characterized by systemic inflammation, anorexia, and elevated energy expenditure, leading to severe weight loss and muscle wasting. Understanding the underlying mechanisms is critical for developing effective interventions.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan. Electronic address:
This study presents a comprehensive examination of the physiological adaptations of white shrimp (Penaeus vannamei) to low-salinity conditions and evaluates the effects of supplementing dietary glucose on disease resistance. Compared to the control group, shrimp cultured at a salinity of 4 psu exhibit significantly elevated expression levels of adenosine 5'-monophosphate-activated protein kinase (AMPK) in the hepatopancreas, which leads to increased energy expenditure and a corresponding reduction in resistance to infection by Vibrio alginolyticus. The suppression of AMPK via dsAMPK treatment markedly enhances disease resistance.
View Article and Find Full Text PDFEnviron Int
December 2024
Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin and Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China. Electronic address:
The soil salinity and alkalinity play an important role in the occurrence and proliferation of antibiotic resistance genes (ARGs). Yet, little is known the underlying mechanism by which soil salinity and alkalinity affect antibiotic resistance evolution. Here we investigated the ARGs variation in soil salinity and alkalinity environments created by different fertilization, and explored the biological mechanisms that salinity and alkalinity alter the evolutionary paradigm of antibiotic resistance.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Polymer Science & Engineering, Sichuan University, Chengdu 610065, China. Electronic address:
While single-atom catalysts (SACs) have been extensively investigated as a high-atom-efficiency heterogeneous catalyst for peroxymonosulfate (PMS) oxidation reaction, the stable constructing and activation efficacy of the reaction sites remains less clarified. Herein, we employed gelatin as a N,O-bidentate ligand for Co (II) to form for a N-doped carbon precursor, while introducing NaCl as a template agent to induce the adoption of a Co-N conformation and disorganize the Co-O moiety. This approach facilitates uniform spatial isolation and atomic-level dispersion of Co atoms within the aerogel, effectively inhibiting the aggregation of Co during synthesis and enabling precise and controllable preparation of Co single-atom catalysts (SACs).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China. Electronic address:
The plastivore insect Tenebrio molitor demonstrates significant potential for the rapid biodegradation and bioremediation of micro(nano)plastics. However, real-time visualization of the digestive degradation and removal of microplastics (MPs) during intestinal transit, along with the associated in vivo intestinal functional responses, remains challenging. Here, we developed second near-infrared (NIR-II) window aggregated-induced emission (AIE) MPs of two sizes (29.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!