The membrane permeability coefficient of a solute can be estimated using the solubility-diffusion model. This model requires the diffusivity profile (D(z)) of the solute as it moves along the transmembrane axis, z. The generalized Langevin equation provides one strategy for calculating position-dependent diffusivity from straightforward molecular dynamics simulations where the solute is restrained to a series of positions on the z-coordinate by a harmonic potential. The diffusivity of the solute is calculated from its correlation functions, which are related to the friction experienced by the solute. Roux and Hummer have derived expressions for the diffusion coefficient from the velocity autocorrelation function (VACF) and position autocorrelation function (PACF), respectively. In this work, these methods are validated by calculating the diffusivity of HO and O in homogeneous liquids. These methods are then used to calculate transmembrane diffusivity profiles. The VACF method is less sensitive to thermostat forces and has incrementally lower errors but is more sensitive to the spring constant of the harmonic restraint. For the permeation of a solute through a lipid bilayer, the diffusion coefficients calculated using these methods provided significantly different results. Long-lived correlations of the restrained solute due to inhomogeneities in the bilayer can result in spuriously low diffusivity when using the PACF method. The method based on the VACF does not have this issue and predicts higher rates of diffusion inside the bilayer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.6b00747 | DOI Listing |
Nanomaterials (Basel)
December 2024
Department of Industrial and Information Engineering and Economics, University of L'Aquila, Piazzale E. Pontieri 1, Monteluco di Roio, Roio Poggio, 67100 L'Aquila, AQ, Italy.
The aim of the present paper is to propose an innovative, one-step and sustainable process allowing us to obtain almost 10 kg/week of pure and crystalline simonkolleite nanoparticles (SK NPs) in only 8 min of reaction, working in water, under ambient conditions of pressure/temperature, guaranteeing at the same time low environmental impact and a high yield of NP production. In addition, the obtained NPs can also act as ZnO precursors at ambient temperature, and this result supports the sustainability of the process considering that, generally, the production of ZnO from SK occurred via annealing at high temperatures. The SK NPs appeared pure and crystalline, characterized by a highly uniform hexagonal lamellar feature.
View Article and Find Full Text PDFAm Stat
February 2024
Department of Biostatistics, UCLA.
This paper advocates proximal Markov Chain Monte Carlo (ProxMCMC) as a flexible and general Bayesian inference framework for constrained or regularized estimation. Originally introduced in the Bayesian imaging literature, ProxMCMC employs the Moreau-Yosida envelope for a smooth approximation of the total-variation regularization term, fixes variance and regularization strength parameters as constants, and uses the Langevin algorithm for the posterior sampling. We extend ProxMCMC to be fully Bayesian by providing data-adaptive estimation of all parameters including the regularization strength parameter.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
In this study, we present a comprehensive analysis of the motion of a tagged monomer within a Gaussian semiflexible polymer model. We carefully derived the generalized Langevin equation (GLE) that governs the motion of a tagged central monomer. This derivation involves integrating out all the other degrees of freedom within the polymer chain, thereby yielding an effective description of the viscoelastic motion of the tagged monomer.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00187 Roma, Italy.
Hydrogen hydrates exhibit a rich phase diagram influenced by both pressure and temperature, with the so-called C_{2} phase emerging prominently above 2.5 GPa. In this phase, hydrogen molecules are densely packed within a cubic icelike lattice and the interaction with the surrounding water molecules profoundly affects their quantum rotational dynamics.
View Article and Find Full Text PDFbioRxiv
December 2024
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM.
DNA breathing dynamics-transient base-pair opening and closing due to thermal fluctuations-are vital for processes like transcription, replication, and repair. Traditional models, such as the Extended Peyrard-Bishop-Dauxois (EPBD), provide insights into these dynamics but are computationally limited for long sequences. We present , a high-throughput Langevin molecular dynamics framework leveraging JAX for GPU-accelerated simulations, achieving up to 30x speedup and superior scalability compared to the original C-based EPBD implementation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!