Polythiophene-Chitosan Magnetic Nanocomposite as a Highly Efficient Medium for Isolation of Fluoxetine from Aqueous and Biological Samples.

J Anal Methods Chem

Analytical Chemistry Laboratories, Department of Chemistry, Islamic Azad University, Central Tehran Branch, Tehran, Iran.

Published: September 2016

Polythiophene/chitosan magnetic nanocomposite as an adsorbent of magnetic solid phase extraction was proposed for the isolation of fluoxetine in aqueous and biological samples prior to fluorescence detection at 246 nm. The synthesized nanoparticles, chitosan and polythiophene magnetic nanocomposite, were characterized by scanning electron microscopy, FT-IR, TGA, and EDAX. The separation of the target analyte from the aqueous solution containing the fluoxetine and polythiophene/chitosan magnetic nanocomposite was simply achieved by applying external magnetic field. The main factors affecting the extraction efficiency including desorption conditions, extraction time, ionic strength, and sample solution pH were optimized. The optimum extraction conditions were obtained as 10 min for extraction time, 25 mg for sorbent amount, 50 mL for initial sample volume, methanol as desorption solvent, 1.5 mL for desorption solvent volume, 3 min for desorption time, and being without salt addition. Under the optimum conditions, good linearity was obtained within the range of 15-1000 μg L(-1) for fluoxetine, with correlation coefficients 0.9994. Furthermore, the method was successfully applied to the determination of fluoxetine in urine and human blood plasma samples. Compared with other methods, the current method is characterized with highly easy, fast separation and low detection limits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031841PMC
http://dx.doi.org/10.1155/2016/2921706DOI Listing

Publication Analysis

Top Keywords

magnetic nanocomposite
16
isolation fluoxetine
8
fluoxetine aqueous
8
aqueous biological
8
biological samples
8
polythiophene/chitosan magnetic
8
extraction time
8
desorption solvent
8
fluoxetine
5
magnetic
5

Similar Publications

A carbon-magnetic modified sepiolite nanocomposite (γ-FeO/SiO-Mg(OH)@BC) was synthesized using a hydrothermal method, consisting of γ-FeO, activated sludge biochar (BC), and alkali-modified sepiolite. Its ability to remove heavy metals such as Sb(V), Pb(II), Cd(II), and Zn(II) was investigated through adsorption experiments. Using response surface optimization, the optimal adsorption conditions were determined: adsorption time = 3.

View Article and Find Full Text PDF

Upconverting/magnetic Janus-like nanoparticles integrated into spiropyran micelle-like nanocarriers for NIR light- and pH- responsive drug delivery, photothermal therapy and biomedical imaging.

Colloids Surf B Biointerfaces

January 2025

Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:

The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.

View Article and Find Full Text PDF

Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

To protect against harmful electromagnetic interference (EMI), it is crucial to fabricate composite with high total electromagnetic shielding efficiency (SE); In this study, FeNi-NiFeO-SiO nanoparticles (NPs) were synthesized using one-pot method and decorated on carbon nanotube's (CNT) sidewall. The final product was magnetic-ceramic/conductive (FeNi-NiFeO-SiO/MWCNT) nanocomposite. The EMI shielding characteristic of FeNi-NiFeO-SiO NPs and FeNi-NiFeO-SiO/MWCNT nanocomposite was investigated in the range of X and Ku frequency band.

View Article and Find Full Text PDF

New insights in the low-temperature-dependent formation of amorphous titania-coated magnetic polydopamine nanocomposites for the adsorption of methylene blue.

Sci Rep

January 2025

Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guian, 550025, China.

Removal of accumulated dyes from the environment water bodies is essential to prevent further harm to humans. The development and design of new alternative nanoadsorbents that can conveniently, quickly, and efficiently improve the adsorption and removal efficiency of dyes from wastewater remains a huge challenge. An amorphous TiO with a magnetic core-shell-shell structure (FeO@PDA@a-TiO, denoted as FPaT) was constructed through a series of steps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!