Nucleolytic processing of aberrant replication intermediates by an Exo1-Dna2-Sae2 axis counteracts fork collapse-driven chromosome instability.

Nucleic Acids Res

Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain

Published: December 2016

Problems during DNA replication underlie genomic instability and drive malignant transformation. The DNA damage checkpoint stabilizes stalled replication forks thus counteracting aberrant fork transitions, DNA breaks and chromosomal rearrangements. We analyzed fork processing in checkpoint deficient cells by coupling psoralen crosslinking with replication intermediate two-dimensional gel analysis. This revealed a novel role for Exo1 nuclease in resecting reversed replication fork structures and counteracting the accumulation of aberrant intermediates resembling fork cleavage products. Genetic analyses demonstrated a functional interplay of Exo1 with Mus81, Dna2 and Sae2 nucleases in promoting cell survival following replication stress, suggestive of concerted nucleolytic processing of stalled forks. While Mus81 and other Structure Specific Endonucleases do not contribute to obvious collapsed fork transitions, Dna2 promotes reversed fork resection likely by facilitating Exo1 access to nascent strands. Instead, Sae2 cooperates with Exo1 in counteracting putative fork cleavage events linked to double strand breaks formation and increased gross chromosomal rearrangement rates. Our data indicate that in checkpoint deficient cells diverse nuclease activities interface to eliminate aberrant replication intermediates and prevent chromosome instability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159547PMC
http://dx.doi.org/10.1093/nar/gkw858DOI Listing

Publication Analysis

Top Keywords

nucleolytic processing
8
aberrant replication
8
replication intermediates
8
fork
8
chromosome instability
8
fork transitions
8
checkpoint deficient
8
deficient cells
8
fork cleavage
8
replication
7

Similar Publications

The regressed arms of reversed replication forks exhibit structural similarities to one-ended double-stranded breaks and need to be protected against uncontrolled nucleolytic degradation. Here, we identify MSANTD4 (Myb/SANT-like DNA-binding domain-containing protein 4), a functionally uncharacterized protein that uniquely counters the replication protein A (RPA)-Bloom (BLM)/Werner syndrome helicase (WRN)-DNA replication helicase/nuclease 2 (DNA2) complex to safeguard reversed replication forks from detrimental degradation, independently of the breast cancer susceptibility proteins (BRCA1/2)-DNA repair protein RAD51 pathway. MSANTD4 specifically interacts with the junctions between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in DNA substrates harboring a 3' overhang, which resemble the structural features of regressed arms processed by WRN-DNA2.

View Article and Find Full Text PDF

Dynamic control of RNA-DNA hybrid formation orchestrates DNA2 activation at stalled forks by RNAPII and DDX39A.

Mol Cell

December 2024

Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; Department of Cell Biology, Zhejiang University School of Medicine, 310058 Hangzhou, China. Electronic address:

Stalled replication forks, susceptible to nucleolytic threats, necessitate protective mechanisms involving pivotal factors such as the tumor suppressors BRCA1 and BRCA2. Here, we demonstrate that, upon replication stress, RNA polymerase II (RNAPII) is recruited to stalled forks, actively promoting the transient formation of RNA-DNA hybrids. These hybrids act as safeguards, preventing premature engagement by the DNA2 nuclease and uncontrolled DNA2-mediated degradation of nascent DNA.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are nucleolytically processed to generate single-stranded DNA for homologous recombination. In Saccharomyces cerevisiae meiosis, this resection involves nicking by the Mre11-Rad50-Xrs2 complex (MRX), then exonucleolytic digestion by Exo1. Chromatin remodeling at meiotic DSBs is thought necessary for resection, but the remodeling enzyme was unknown.

View Article and Find Full Text PDF

Meiotic recombination is initiated by DNA double-strand breaks (DSBs) created by Spo11, a type-II topoisomerase-like protein that becomes covalently linked to DSB ends. Whilst Spo11 oligos-the products of nucleolytic removal by Mre11-have been detected in several organisms, the lifetime of the covalent Spo11-DSB precursor has not been determined and may be subject to alternative processing. Here, we explore the activity of human Tyrosyl DNA Phosphodiesterase, TDP2-a protein known to repair DNA ends arising from abortive topoisomerase activity-on Spo11 DSBs isolated from S.

View Article and Find Full Text PDF

Homologous recombination is initiated by the nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection is a two-step process. In the short-range step, the MRX (Mre11-Rad50-Xrs2) complex, together with Sae2, incises the 5'-terminated strand at the DSB end and resects back toward the DNA end.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!