Autophagy, a pathway for lysosomal-mediated cellular degradation, has recently been described as a regulator of cell migration. Although the molecular mechanisms underlying autophagy-dependent motility are only beginning to emerge, new work demonstrates that selective autophagy mediated by the autophagy cargo receptor, NBR1, specifically promotes the dynamic turnover of integrin-based focal adhesion sites during motility. Here, we discuss the detailed mechanisms through which NBR1-dependent selective autophagy supports focal adhesion remodeling, and we describe the interconnections between this pathway and other established regulators of focal adhesion turnover, such as microtubules. We also highlight studies that examine the contribution of autophagy to selective degradation of proteins that mediate cellular tension and to integrin trafficking; these findings hint at further roles for autophagy in supporting adhesion and migration. Given the recently appreciated importance of selective autophagy in diverse cellular processes, we propose that further investigation into autophagy-mediated focal adhesion turnover will not only shed light onto how focal adhesions are regulated but will also unveil new mechanisms regulating selective autophagy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087656 | PMC |
http://dx.doi.org/10.1242/jcs.188490 | DOI Listing |
Cancer Sci
December 2024
Department of Molecular Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan.
Patient-derived organoids represent a novel platform to recapitulate the cancer cells in the patient tissue. While cancer heterogeneity has been extensively studied by a number of omics approaches, little is known about the spatiotemporal kinase activity dynamics. Here we applied a live imaging approach to organoids derived from 10 pancreatic ductal adenocarcinoma (PDAC) patients to comprehensively understand their heterogeneous growth potential and drug responses.
View Article and Find Full Text PDFNeuro Oncol
December 2024
Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Background: Selinexor is a selective inhibitor of exportin-1 (XPO1), a key mediator of the nucleocytoplasmic transport for molecules critical to tumor cell survival. Selinexor's lethality is generally associated with the induction of apoptosis, and in some cases, with autophagy-induced apoptosis. We performed this study to determine Selinexor's action in glioblastoma (GBM) cells, which are notoriously resistant to apoptosis.
View Article and Find Full Text PDFMol Med
December 2024
Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
Vertebrates differ over 100,000-fold in responses to pro-inflammatory agonists such as bacterial lipopolysaccharide (LPS), complicating use of animal models to study human sepsis or inflammatory disorders. We compared transcriptomes of resting and LPS-exposed blood from six LPS-sensitive species (rabbit, pig, sheep, cow, chimpanzee, human) and four LPS-resilient species (mice, rats, baboon, rhesus), as well as plasma proteomes and lipidomes. Unexpectedly, at baseline, sensitive species already had enhanced expression of LPS-responsive genes relative to resilient species.
View Article and Find Full Text PDFStem Cell Res
December 2024
Institute of Physiology I, Medical Faculty, University of Bonn, Germany. Electronic address:
BAG3 contributes to the maintenance of proteostasis through chaperone-assisted selective autophagy. This function is impaired by a single amino acid exchange (P209L) in the protein, which causes myofibrillar myopathy-6 (MFM6). This disease manifests as severe skeletal muscle weakness, neuropathy and restrictive cardiomyopathy.
View Article and Find Full Text PDFAutophagy
December 2024
Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
Bulk macroautophagy/autophagy, typically induced by starvation, is generally thought to non-selectively isolate cytosolic components for degradation. However, a detailed analysis of bulk autophagy cargo has not been conducted. We recently employed mass spectrometry to analyze the contents of isolated autophagic bodies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!