Organic thin-film transistors for high frequency applications require large transconductances in combination with minimal parasitic capacitances. Techniques aiming at eliminating parasitic capacitances are prone to produce a mismatch between electrodes, in particular gaps between the gate and the interlayer electrodes. While such mismatches are typically undesirable, we demonstrate that, in fact, device structures with a small single-sided interlayer electrode gap directly probe the detrimental contact resistance arising from the presence of an injection barrier. By employing a self-alignment nanoimprint lithography technique, asymmetric coplanar organic transistors with an intentional gap of varying size (< 0.2 μm) between gate and one interlayer electrode are fabricated. An electrode overlap exceeding 1 μm with the other interlayer has been kept. Gaps, be them source or drain-sided, do not preclude transistor operation. The operation of the device with a source-gate gap reveals a current reduction up to two orders of magnitude compared to a source-sided overlap. Drift-diffusion based simulations reveal that this marked reduction is a consequence of a weakened gate-induced field at the contact which strongly inhibits injection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037384 | PMC |
http://dx.doi.org/10.1038/srep31387 | DOI Listing |
J Am Chem Soc
January 2025
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
High mobility emissive organic semiconductors (HMEOSCs) are a kind of unique semiconducting material that simultaneously integrates high charge carrier mobility and strong emission features, which are not only crucial for overcoming the performance bottlenecks of current organic optoelectronic devices but also important for constructing high-density integrated devices/circuits for potential smart display technologies and electrically pumped organic lasers. However, the development of HMEOSCs is facing great challenges due to the mutually exclusive requirements of molecular structures and packing modes between high charge carrier mobility and strong solid-state emission. Encouragingly, considerable advances on HMEOSCs have been made with continuous efforts, and the successful integration of these two properties within individual organic semiconductors currently presents a promising research direction in organic electronics.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Electrical Engineering, University of California, Irvine, CA, USA.
Complementary transistors are critical for circuits with compatible input/output signal dynamic range and polarity. Organic electronics offer biocompatibility and conformability; however, generation of complementary organic transistors requires introduction of separate materials with inadequate stability and potential for tissue toxicity, limiting their use in biomedical applications. Here, we discovered that introduction of source/drain contact asymmetry enables spatial control of de/doping and creation of single-material complementary organic transistors from a variety of conducting polymers of both carrier types.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
Vertical organic electrochemical transistors (vOECTs) have received widespread attention in bioelectronics, wearable, and neuromorphic electronics due to their high transconductance (), low driving voltage, and biocompatibility. As key parameters of vOECTs, and switching speed (or transient time, τ) are vital for achieving satisfying performance in various practical applications. Here we employ vOECTs with varying top electrode widths for effective and switching speed modulation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Oxford University: University of Oxford, Department of Chemistry, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Organic semiconducting polymers play a pivotal role in the development of field-effect transistors (OFETs) and organic light-emitting diodes (OLEDs), owing to their cost-effectiveness, structural versatility, and solution processability. However, achieving polymers with both high charge carrier mobility (μ) and photoluminescence (PL) quantum yield (Φ) remains a challenge. In this work, we present the design and synthesis of a novel donor-acceptor π-conjugated polymer, TTIF-BT, featuring a di-Thioeno[3,2-b] ThioenoIndeno[1,2-b] Fluorene (TTIF) backbone as the donor component.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208.
Human perception systems are highly refined, relying on an adaptive, plastic, and event-driven network of sensory neurons. Drawing inspiration from Nature, neuromorphic perception systems hold tremendous potential for efficient multisensory signal processing in the physical world; however, the development of an efficient artificial neuron with a widely calibratable spiking range and reduced footprint remains challenging. Here, we report an efficient organic electrochemical neuron (OECN) with reduced footprint (<37 mm) based on high-performance vertical OECT (vOECT) complementary circuitry enabled by an advanced n-type polymer for balanced p-/n-type vOECT performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!