Microscopy of biological specimens often requires low light levels to avoid damage. This yields images impaired by shot noise. An improved measurement accuracy at the Heisenberg limit can be achieved exploiting quantum correlations. If sample damage is the limiting resource, an equivalent limit can be reached by passing photons through a specimen multiple times sequentially. Here we use self-imaging cavities and employ a temporal post-selection scheme to present full-field multi-pass polarization and transmission micrographs with variance reductions of 4.4±0.8 dB (11.6±0.8 dB in a lossless setup) and 4.8±0.8 dB, respectively, compared with the single-pass shot-noise limit. If the accuracy is limited by the number of detected probe particles, our measurements show a variance reduction of 25.9±0.9 dB. The contrast enhancement capabilities in imaging and in diffraction studies are demonstrated with nanostructured samples and with embryonic kidney 293T cells. This approach to Heisenberg-limited microscopy does not rely on quantum state engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052624 | PMC |
http://dx.doi.org/10.1038/ncomms12858 | DOI Listing |
Materials (Basel)
November 2024
Institute of New Materials and Technologies, Ural Federal University, 620062 Yekaterinburg, Russia.
Owing to their high producibility and resistance to corrosion, austenitic chromium-nickel steels are widely used in the chemical, petroleum, and food industries. However, their significant disadvantage lies in their poor structural performance, which cannot be improved by heat treatment. This significantly limits the usability of these steels in parts of machines that operate under friction loads.
View Article and Find Full Text PDFNature
September 2024
Paul. G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
The ability to sequence single protein molecules in their native, full-length form would enable a more comprehensive understanding of proteomic diversity. Current technologies, however, are limited in achieving this goal. Here, we establish a method for the long-range, single-molecule reading of intact protein strands on a commercial nanopore sensor array.
View Article and Find Full Text PDFmSphere
January 2024
Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.
Nuclear-encoded mitochondrial proteins are correctly translocated to their proper sub-mitochondrial destination using location-specific mitochondrial targeting signals and via multi-protein import machineries (translocases) in the outer and inner mitochondrial membranes (TOM and TIMs, respectively). However, targeting signals of multi-pass Tims are less defined. Here, we report the characterization of the targeting signals of Tim17 (TbTim17), an essential component of the most divergent TIM complex.
View Article and Find Full Text PDFUnlabelled: Nuclear-encoded mitochondrial proteins are correctly translocated to their proper sub-mitochondrial destination using location specific mitochondrial targeting signals (MTSs) and via multi-protein import machineries (translocases) in the outer and inner mitochondrial membranes (TOM and TIMs, respectively). However, MTSs of multi-pass Tims are less defined. Here we report the characterization of the MTSs of Tim17 (TbTim17), an essential component of the most divergent TIM complex.
View Article and Find Full Text PDFMaterials (Basel)
January 2023
Department of Applied Science, University of Quebec at Chicoutimi, Saguenay, QC G7H 2B1, Canada.
A new strategy is proposed to modify the grain structure and crystallographic texture of laser-powder bed fusion AlSi10Mg alloy using multi-pass friction stir processing (FSP). Accordingly, 1-3 passes of FSP with 100% overlap were performed. Scanning electron microscopy and electron backscattered diffraction were used for microstructural characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!