In vitro investigation of intestinal transport mechanism of silicon, supplied as orthosilicic acid-vanillin complex.

Mol Nutr Food Res

Institut des Sciences de la Vie, UCLouvain, Louvain-la-Neuve, Belgium.

Published: February 2017

Scope: Silicon (Si) is one of the most abundant trace elements in the body. Although pharmacokinetics data described its absorption from the diet and its body excretion, the mechanisms involved in the uptake and transport of Si across the gut wall have not been established.

Methods And Results: Caco-2 cells were used as a well-accepted in vitro model of the human intestinal epithelium to investigate the transport, across the intestinal barrier in both the absorption and excretion directions, of Si supplied as orthosilicic acid stabilized by vanillin complex (OSA-VC). The transport of this species was found proportional to the initial concentration and to the duration of incubation, with absorption and excretion mean rates similar to those of Lucifer yellow, a marker of paracellular diffusion, and increasing in the presence of EGTA, a chelator of divalents cations including calcium. A cellular accumulation of Si, polarized from the apical side of cells, was furthermore detected.

Conclusion: These results provide evidence that Si, ingested as a food supplement containing OSA-VC, crosses the intestinal mucosa by passive diffusion via the paracellular pathway through the intercellular tight junctions and accumulates intracellularly, probably by an uptake mechanism of facilitated diffusion. This study can help to further understand the kinetic of absorption of Si.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201600602DOI Listing

Publication Analysis

Top Keywords

supplied orthosilicic
8
absorption excretion
8
vitro investigation
4
intestinal
4
investigation intestinal
4
transport
4
intestinal transport
4
transport mechanism
4
mechanism silicon
4
silicon supplied
4

Similar Publications

Background: Choline-stabilized orthosilicic acid (CS-OSA) was previously found to stimulate bone collagen formation in osteopenia and to improve biomarkers of cartilage degradation in knee osteoarthritis. The aim of the present study was to investigate the effect of oral administration of CS-OSA on clinical symptoms of peri-implantitis and the associated bone loss.

Methods: Twenty-one patients with peri-implantitis were randomized in CS-OSA or placebo groups.

View Article and Find Full Text PDF

Hard-to-heal wounds represent an increasing health and economic burden on society. At present, therapy options for hard-to-heal wounds are often unsatisfactory, and the development of more effective wound treatments is urgently needed. We have shown that orthosilicic acid-releasing silica fibre fleece (SIFIB), via its pronounced anti-inflammatory properties, exhibited a significantly enhanced effect on wound closure kinetics in a porcine wound model in vivo.

View Article and Find Full Text PDF

Inhibitory effects of orthosilicic acid on osteoclastogenesis in RANKL-stimulated RAW264.7 cells.

J Biomed Mater Res A

October 2021

Department of Orthodontics, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Numerous studies have reported on the positive effects of silicon (Si) on bone metabolism, particularly on the stimulatory effects of Si on osteoblast cells and on bone formation. Inhibitory effects of Si on osteoclast formation and bone resorption have also been demonstrated in vitro and are suggested to be mediated indirectly via stromal and osteoblast cells. Direct effects of Si on osteoclasts have been less studied and mostly using soluble Si, but no characterisation of the Si treatment solutions are provided.

View Article and Find Full Text PDF

Biodegradable mesoporous delivery system for biomineralization precursors.

Int J Nanomedicine

April 2017

Department of Endodontics, College of Dental Medicine, Augusta University, Augusta, GA, USA.

Scaffold supplements such as nanoparticles, components of the extracellular matrix, or growth factors have been incorporated in conventional scaffold materials to produce smart scaffolds for tissue engineering of damaged hard tissues. Due to increasing concerns on the clinical side effects of using large doses of recombinant bone-morphogenetic protein-2 in bone surgery, it is desirable to develop an alternative nanoscale scaffold supplement that is not only osteoinductive, but is also multifunctional in that it can perform other significant bone regenerative roles apart from stimulation of osteogenic differentiation. Because both amorphous calcium phosphate (ACP) and silica are osteoinductive, a biodegradable, nonfunctionalized, expanded-pore mesoporous silica nanoparticle carrier was developed for loading, storage, and sustained release of a novel, biosilicification-inspired, polyamine-stabilized liquid precursor phase of ACP for collagen biomineralization and for release of orthosilicic acid, both of which are conducive to bone growth.

View Article and Find Full Text PDF

Scope: Silicon (Si) is one of the most abundant trace elements in the body. Although pharmacokinetics data described its absorption from the diet and its body excretion, the mechanisms involved in the uptake and transport of Si across the gut wall have not been established.

Methods And Results: Caco-2 cells were used as a well-accepted in vitro model of the human intestinal epithelium to investigate the transport, across the intestinal barrier in both the absorption and excretion directions, of Si supplied as orthosilicic acid stabilized by vanillin complex (OSA-VC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!