Immune Antibody Libraries: Manipulating The Diverse Immune Repertoire for Antibody Discovery.

Curr Pharm Des

Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.

Published: March 2018

Background: Antibody phage display is highly dependent on the availability of antibody libraries. There are several forms of libraries depending mainly on the origin of the source materials. There are three major classes of libraries, mainly the naïve, immune and synthetic libraries.

Methods: Immune antibody libraries are designed to isolate specific and high affinity antibodies against disease antigens. The pre-exposure of the host to an infection results in the production of a skewed population of antibodies against the particular infection.

Results: This characteristic takes advantage of the in vivo editing machinery to generate bias and specific immune repertoire. The skewed but diverse repertoire of immune libraries has been adapted successfully in the generation of antibodies against a wide range of diseases.

Conclusion: We envisage immune antibody libraries to play a greater role in the discovery of antibodies for diseases in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612822666160923111924DOI Listing

Publication Analysis

Top Keywords

antibody libraries
16
immune antibody
12
immune repertoire
8
immune
7
libraries
7
antibody
5
libraries manipulating
4
manipulating diverse
4
diverse immune
4
repertoire antibody
4

Similar Publications

Antibodies have gained clinical success in the last two decades for the targeted delivery of highly toxic small molecule chemotherapeutics. Yet antibody-drug conjugates (ADCs) often fail in the clinic due to the development of resistance. The delivery of two mechanistically distinct small molecule drugs on one antibody is of increasing interest to overcome these challenges with single-drug ADCs.

View Article and Find Full Text PDF

Unlabelled: Porcine deltacoronavirus (PDCoV) is an enteric pathogen that burdens the global pig industry and is a public health concern. The development of effective antiviral therapies is necessary for the prevention and control of PDCoV, yet to date, there are few studies on the therapeutic potential of PDCoV-neutralizing antibodies. Here, we investigate the therapeutic potential of a novel monoclonal antibody (mAb 4A6) which targets the PDCoV S1 protein and effectively neutralizes PDCoV, both pre- and post-attachment on cells, with IC50 values of 0.

View Article and Find Full Text PDF

Combining computational modeling and experimental library screening to affinity-mature VEEV-neutralizing antibody F5.

Protein Sci

February 2025

Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California, USA.

Engineered monoclonal antibodies have proven to be highly effective therapeutics in recent viral outbreaks. However, despite technical advancements, an ability to rapidly adapt or increase antibody affinity and by extension, therapeutic efficacy, has yet to be fully realized. We endeavored to stand-up such a pipeline using molecular modeling combined with experimental library screening to increase the affinity of F5, a monoclonal antibody with potent neutralizing activity against Venezuelan Equine Encephalitis Virus (VEEV), to recombinant VEEV (IAB) E1E2 antigen.

View Article and Find Full Text PDF

The B domain of protein A is a biotechnologically important three-helix bundle protein. It binds the Fc fragment of antibodies with helix 1/2 and the Fab region with helix 2/3. Here we designed a helix shuffled variant by changing the connectivity of the helices, in order to redesign the helix bundle, yielding altered helix-loop-helix properties.

View Article and Find Full Text PDF

Construction of Immune Single Domain Antibodies Library for Development of Specific Nanobodies Using Phage Display Strategy.

Recent Pat Biotechnol

January 2025

Center of Excellence in Recombinant Biopharmaceutical Proteins, Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.

Background: poses a considerable global public health challenge. In Egypt, approximately 60% of the inhabitants in the Northern and Eastern areas of the Nile Delta are affected by this parasite, whereas the Southern region experiences a significantly lower infection rate of 6%.

Aim: Construction of an immune phage display Nbs library based on the VHH framework for selecting -specific Nbs for seeking cost-effective, sensitive, and specific diagnostic tools for rapidly detecting mansoni.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!