Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inhibition of E-cadherin gene expression by transcription factor SNAIL is known to be a crucial element of Epithelial to Mesenchymal Transition; EMT. Epigenetic regulation of E-cadherin expression is regulated by SNAIL binding to E-box sequences in the CDH1 gene promoter and recruiting enzymes belonging to repressor complexes that are directly engaged in histone modifications and DNA methylation leading to the modification of chromatin structure. SNAIL involvement in cell acquisition of invasive phenotype is based on direct suppression of tight-junction and gap junction proteins. The nuclear localization of SNAIL is required for SNAIL activity and protects this factor from proteasomal degradation in the cytoplasm. The main factor engaged in that process is GSK- 3β kinase. Expression and stability of SNAIL is regulated on the transctriptional and posttranscriptional levels by a number of signaling molecules and biological factors, for example: TGF-β, TNF-α, ILK and NFκB. The expression of SNAIL in cancer cells is also regulated by micro-RNA, mainly by miR-34. Increased expression of SNAIL, observed in many human cancers, has been correlated with increased resistance to chemio-, radio - or immunotherapy, gain of cancer stem cells features and migrative and invasive characteristics, which leads to tumor metastases. Understanding of the SNAIL's mechanism of action may lead to new treatment strategies in cancer directed to interfere with signaling pathways that either activate SNAIL or are activated by SNAIL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5604/17322693.1219401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!