In Vivo Angiography Quantifies Oxygen-Induced Retinopathy Vascular Recovery.

Optom Vis Sci

*MD, ODDepartment of Pediatrics and Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.

Published: October 2016

Purpose: Retinopathy of prematurity (ROP) is a potentially blinding vasoproliferative disease. There is no standardized way to quantify plus disease (tortuous and dilated retinal vessels) or characterize abnormal recovery during ROP monitoring. This study objectively studies vascular features in live mice during development using noninvasive retinal imaging.

Methods: Using fluorescein angiography (FA), retinal vascular features were quantified in live mice with oxygen induced retinopathy (OIR). A total of 105 wild-type mice were exposed to 77% oxygen from postnatal day 7 (P7) till P12 (OIR mice). Also, 105 age-matched pups were raised in room air (RA mice). In vivo FA was performed at early (P16 to P20), mid (P23 to P27), late (P30 to P34), and mature (P47) phases of retinal vascular development. Retinal vascular area, retinal vein width, and retinal artery tortuosity were quantified.

Results: Retinal artery tortuosity was higher in OIR than RA mice at early (p < 0.0001), mid (p < 0.0001), late (p < 0.0001), and mature (p < 0.0001) phases. Retinal vascular area in OIR mice increased from early to mid-phase (p < 0.0001), but remained unchanged from mid to late (p = 0.23), and from late to mature phase (p = 0.98). Retinal vein width was larger in OIR mice compared to RA mice during early phase only. Arteries in OIR mice were more tortuous from early to mid-phase (p < 0.0001), but tortuosity remained stable from mid through mature phase. RA mice had an increase in retinal vascular area from early to late phase, but maintained uniform retinal vein width and retinal artery tortuosity in all phases.

Conclusions: In vivo FA distinguished arterial and venous features, similar to plus disease, and revealed aberrant recovery of OIR mice (arterial tortuosity, reduced capillary density, and absent neovascular buds) that persisted into adulthood. Retinal artery tortuosity may be a reliable, objective marker of severity of ROP. Infants with abnormal retinal vascular recovery may need extended monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049950PMC
http://dx.doi.org/10.1097/OPX.0000000000000941DOI Listing

Publication Analysis

Top Keywords

retinal vascular
24
oir mice
24
retinal artery
16
artery tortuosity
16
retinal
15
mice
12
vascular area
12
retinal vein
12
vein width
12
vascular
8

Similar Publications

Therapeutic Potential of Dimethyl Sulfoxide Subconjunctival Injection in a Diabetic Retinopathy Rat Model.

In Vivo

December 2024

Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea

Background/aim: Diabetic retinopathy (DR), a complication of diabetes, causes damage to retinal blood vessels and can lead to vision impairment. Persistent high blood glucose levels contribute to this damage, and despite ongoing research, effective treatment options for DR remain limited. Dimethyl sulfoxide (DMSO) has shown anti-inflammatory and antioxidant properties in both in vivo and in vitro studies; however, its potential as an anti-inflammatory agent in the context of DR has not yet been explored.

View Article and Find Full Text PDF

Photoreceptors (PRs) are metabolically demanding and packed at high density, which presents a challenge for nutrient exchange between the associated vascular beds and the tissue. Motivated by the ambition to understand the constraints under which PRs function, in this study we have drawn together diverse physiological and anatomical data in order to generate estimates of the rates of ATP production per mm2 of retinal surface area. With the predictions of metabolic demand in the companion paper, we seek to develop an integrated energy budget for the outer retina.

View Article and Find Full Text PDF

Endothelial cells and high glucose-induced endothelial dysfunction are the common origin of chronic diabetic complications such as retinopathy, nephropathy, and cardiomyopathy. Yet their common origins, the vascular manifestations of such complications are different. We examined the basal heterogeneity between microvascular endothelial cells(MECs) from the retina, kidneys, and heart, as well as their differential responses to hyperglycemia in diabetes.

View Article and Find Full Text PDF

Purpose: The purpose of this study was o examine the optical coherence tomographic (OCT) characteristics of hyper-reflective foci (HRF) in patients with neovascular age-related macular degeneration (nAMD) and to assess the potential of HRF as a predictive factor for the development of macular atrophy following anti-vascular endothelial growth factor (anti-VEGF) therapy.

Methods: This was a retrospective analysis of 61 treatment-naïve eyes diagnosed with exudative AMD and type 1 macular neovascularization (MNV). The HRF was identified in the inner retina and outer retina layers, and the treatment response of HRF was documented.

View Article and Find Full Text PDF

This study aimed to evaluate the changes in cytokine levels in the aqueous humor and factors of treatment resistance following intravitreal faricimab injection in treatment-naïve patients with neovascular age-related macular degeneration. A total of 32 eyes were analyzed before and after a single faricimab injection. Although the best-corrected visual acuity (BCVA) showed no significant improvement, the mean central retinal thickness decreased significantly by 73.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!