Obtaining accurate predictions of the neutral density in the thermosphere has been a long-standing problem. During geomagnetic storms the auroral heating in the polar ionospheres quickly raises the temperature of the thermosphere, resulting in higher neutral densities that exert a greater drag force on objects in low Earth orbit. Rapid increases and decreases in the temperature and density may occur within a couple days. A key parameter in the thermosphere is the total amount of nitric oxide (NO). The production of NO is accelerated by the auroral heating, and since NO is an efficient radiator of thermal energy, higher concentrations of this molecule accelerate the rate at which the thermosphere cools. This paper describes an improved technique that calculates changes in the global temperature of the thermosphere. Starting from an empirical model of the Poynting flux into the ionosphere, a set of differential equations derives the minimum, global value of the exospheric temperature, which can be used in a neutral density model to calculate the global values. The relative variations in NO content are used to obtain more accurate cooling rates. Comparisons with the global rate of NO emissions that are measured with the Sounding of the Atmosphere using Broadband Emission Radiometry instrument show that there is very good agreement with the predicted values. The NO emissions correlate highly with the total auroral heating that has been integrated over time. We also show that the NO emissions are highly correlated with thermospheric temperature, as well as indices of solar extreme ultraviolet radiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014240 | PMC |
http://dx.doi.org/10.1002/2015JA021461 | DOI Listing |
A multi-instrument study is conducted at the dayside polar ionosphere to investigate the spatio-temporal evolution of scintillation in Global Navigation Satellite System (GNSS) signals during non-storm conditions. Bursts of intense amplitude and phase scintillation started to occur at 9 MLT and persisted for more than 1 hour implying the simultaneous existence of Fresnel and large-scale sized irregularities of significant strength in the pre-noon sector. Measurements from the EISCAT radar in Svalbard (ESR) revealed the presence of dense plasma structures with significant gradients in regions of strong Joule heating/fast flows and soft precipitation when scintillation was enhanced.
View Article and Find Full Text PDFSimultaneous observations of and in Jupiter's northern infrared aurora were conducted on 02 June 2017 using Keck-NIRSPEC to produce polar projection maps of radiance, rotational temperature, column density, and radiance. The temperature variations within the auroral region are K, generally consistent with previous studies, albeit with some structural differences. Known auroral heating sources including particle precipitation, Joule heating, and ion drag have been examined by studying the correlations between each derived quantity, yet no single dominant mechanism can be identified as the main driver for the energetics in Jupiter's northern auroral region.
View Article and Find Full Text PDFNature
April 2024
Department of Astrophysics, American Museum of Natural History, New York, NY, USA.
Beyond our Solar System, aurorae have been inferred from radio observations of isolated brown dwarfs. Within our Solar System, giant planets have auroral emission with signatures across the electromagnetic spectrum including infrared emission of H and methane. Isolated brown dwarfs with auroral signatures in the radio have been searched for corresponding infrared features, but only null detections have been reported.
View Article and Find Full Text PDFJ Geophys Res Space Phys
October 2022
JHU-APL Laurel MD USA.
The dynamics of the Jovian magnetosphere is controlled by the interplay of the planet's fast rotation, its solar-wind interaction and its main plasma source at the Io torus, mediated by coupling processes involving its magnetosphere, ionosphere, and thermosphere. At the ionospheric level, these processes can be characterized by a set of parameters including conductances, field-aligned currents, horizontal currents, electric fields, transport of charged particles along field lines including the fluxes of electrons precipitating into the upper atmosphere which trigger auroral emissions, and the particle and Joule heating power dissipation rates into the upper atmosphere. Determination of these key parameters makes it possible to estimate the net transfer of momentum and energy between Jovian upper atmosphere and equatorial magnetosphere.
View Article and Find Full Text PDFWe examine characteristics of the seasonal variation of thermospheric composition using column number density ratio ∑ observed by the NASA Global Observations of Limb and Disk (GOLD) mission from low-mid to mid-high latitudes. We also use ∑ derived from the Global Ultraviolet Imager (GUVI) limb measurements onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite and estimated by the NRLMSISE-00 empirical model to aid our investigation. We found that the seasonal variation is hemispherically asymmetric: in the southern hemisphere, it exhibits the well-known annual and semiannual pattern, with highs near the equinoxes, and primary and secondary lows near the solstices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!