A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HMDSO-plasma coated electrospun fibers of poly(cyclodextrin)s for antifungal dressings. | LitMetric

HMDSO-plasma coated electrospun fibers of poly(cyclodextrin)s for antifungal dressings.

Int J Pharm

Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain. Electronic address:

Published: November 2016

Electrospun mats containing cyclodextrin polymers (poly-αCD or poly-βCD) were developed to act as wound dressings showing tunable release rate of the antifungal agent fluconazole incorporated forming inclusion complexes. Poly-αCD and poly-βCD were prepared via cross-linking with epichlorohydrin (EPI) as water-soluble large molecular weight polymers. Then, polyCDs forming complexes with fluconazole were mixed with poly-(ε-caprolactone) (PCL) or poly(N-vinylpyrrolidone) (PVP) for electrospinning. Obtained bead-free fibers showed a random distribution, diameters in the 350-850nm range, and a variety of physical stability behaviors in aqueous environment. Mats were coated by hexamethyldisiloxane (HMDSO) plasma polymerization to create a hydrophobic layer that prevented rapid drug diffusion. HMDSO coating was evidenced by the Si content of mat surface (EDX analysis) and by the increase in the water contact angle (up to 130°). In physiological-mimicking medium, non-treated mats showed burst release of fluconazole, whereas HMDSO-coated mats sustained the release and delayed disintegration of PVP-based mats. Antifungal tests evidenced that both coated and non-coated mats efficiently inhibited the growth of Candida albicans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2016.09.064DOI Listing

Publication Analysis

Top Keywords

poly-αcd poly-βcd
8
mats
6
hmdso-plasma coated
4
coated electrospun
4
electrospun fibers
4
fibers polycyclodextrins
4
polycyclodextrins antifungal
4
antifungal dressings
4
dressings electrospun
4
electrospun mats
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!