In this study, we demonstrate that the lysine methyltransferase G9a inhibits sarcomere organization through regulation of the MEF2C-HDAC5 regulatory axis. Sarcomeres are essential for muscle contractile function. Presently, skeletal muscle disease and dysfunction at the sarcomere level has been associated with mutations of sarcomere proteins. This study provides evidence that G9a represses expression of several sarcomere genes and its over-expression disrupts sarcomere integrity of skeletal muscle cells. G9a inhibits MEF2C transcriptional activity that is essential for expression of sarcomere genes. Through protein interaction assays, we demonstrate that G9a interacts with MEF2C and its co-repressor HDAC5. In the presence of G9a, calcium signaling-dependent phosphorylation and export of HDAC5 to the cytoplasm is blocked which likely results in enhanced MEF2C-HDAC5 association. Activation of calcium signaling or expression of constitutively active CaMK rescues G9a-mediated repression of HDAC5 shuttling as well as sarcomere gene expression. Our results demonstrate a novel epigenetic control of sarcomere assembly and identifies new therapeutic avenues to treat skeletal and cardiac myopathies arising from compromised muscle function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036183 | PMC |
http://dx.doi.org/10.1038/srep34163 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!