Functional pharmacological characterization of SER100 in cardiovascular health and disease.

Br J Pharmacol

William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.

Published: December 2016

Background And Purpose: SER100 is a selective nociceptin (NOP) receptor agonist with sodium-potassium-sparing aquaretic and anti-natriuretic activity. This study was designed to characterize the functional cardiovascular pharmacology of SER100 in vitro and in vivo, including experimental models of cardiovascular disease.

Experimental Approach: Haemodynamic, ECG parameters and heart rate variability (HRV) were determined using radiotelemetry in healthy, conscious mice. The haemodynamic and vascular effects of SER100 were also evaluated in two models of cardiovascular disease, spontaneously hypertensive rats (SHR) and murine hypoxia-induced pulmonary hypertension (PH). To elucidate mechanisms underlying the pharmacology of SER100, acute blood pressure recordings were performed in anaesthetized mice, and the reactivity of rodent aorta and mesenteric arteries in response to electrical- and agonist-stimulation assessed.

Key Results: SER100 caused NOP receptor-dependent reductions in mean arterial blood pressure and heart rate that were independent of NO. The hypotensive and vasorelaxant actions of SER100 were potentiated in SHR compared with Wistar Kyoto. Moreover, SER100 reduced several indices of disease severity in experimental PH. Analysis of HRV indicated that SER100 decreased the low/high frequency ratio, an indicator of sympatho-vagal balance, and in electrically stimulated mouse mesenteric arteries SER100 inhibited sympathetic-induced contractions.

Conclusions And Implications: SER100 exerts a chronic hypotensive and bradycardic effects in rodents, including models of systemic and pulmonary hypertension. SER100 produces its cardiovascular effects, at least in part, by inhibition of cardiac and vascular sympathetic activity. SER100 may represent a novel therapeutic candidate in systemic and pulmonary hypertension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738664PMC
http://dx.doi.org/10.1111/bph.13634DOI Listing

Publication Analysis

Top Keywords

ser100
13
pulmonary hypertension
12
pharmacology ser100
8
models cardiovascular
8
heart rate
8
blood pressure
8
mesenteric arteries
8
systemic pulmonary
8
cardiovascular
5
functional pharmacological
4

Similar Publications

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge due to the emergence of drug-resistant strains. This study targets Flavin-dependent thymidylate synthase (ThyX), an essential enzyme in the thymidylate biosynthesis pathway crucial for bacterial DNA replication. We utilized advanced computational techniques, including molecular dynamics (MD) simulations and interaction energy analysis, to examine the binding interactions and stability of various thiazole-thiadiazole compounds with Mtb ThyX.

View Article and Find Full Text PDF

Structure of the human outer kinetochore KMN network complex.

Nat Struct Mol Biol

June 2024

MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.

Faithful chromosome segregation requires robust, load-bearing attachments of chromosomes to the mitotic spindle, a function accomplished by large macromolecular complexes termed kinetochores. In most eukaryotes, the constitutive centromere-associated network (CCAN) complex of the inner kinetochore recruits to centromeres the ten-subunit outer kinetochore KMN network that comprises the KNL1C, MIS12C and NDC80C complexes. The KMN network directly attaches CCAN to microtubules through MIS12C and NDC80C.

View Article and Find Full Text PDF

Two experiments were conducted to identify the optimal dose of zinc proteinate (ZP) in the diet for dairy calves and then to compare early supplementation with the ZP or zinc methionine (ZM) on the growth performance, incidence of diarrhea, antioxidant status, and immune function of dairy calves during their first month of life. In Experiment 1, forty newborn female Holstein dairy calves were randomly divided into four groups ( = 10): a control group (without ZP supplementation, ZP0) or groups that received ZP supplementation at 40, 80, and 120 mg zinc/day, respectively (ZP40, ZP80, and ZP120). The experiment lasted 14 days, and the growth performance, incidence of diarrhea, and serum zinc concentration were analyzed.

View Article and Find Full Text PDF

CYP2C8-Mediated Formation of a Human Disproportionate Metabolite of the Selective Na1.7 Inhibitor DS-1971a, a Mixed Cytochrome P450 and Aldehyde Oxidase Substrate.

Drug Metab Dispos

March 2022

Drug Metabolism and Pharmacokinetics Research Laboratories (D.A., H.S., Y.N., M.K., N.Y., Ta.S., S.I., C.Y., N.W.), Translational Science Department (M.I.), R&D Planning and Management Department (Ts.S.), and Medicinal Safety Research Laboratories (T.W.), Daiichi Sankyo Co., Ltd., Tokyo, Japan; Organic and Biomolecular Chemistry Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan (S.H., T.K.); Quantitative Clinical Pharmacology and Translational Sciences, Daiichi Sankyo, Inc., Basking Ridge, New Jersey (H.Z.); and Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (K.Y.).

Predicting human disproportionate metabolites is difficult, especially when drugs undergo species-specific metabolism mediated by cytochrome P450s (P450s) and/or non-P450 enzymes. This study assessed human metabolites of DS-1971a, a potent Na1.7-selective blocker, by performing human mass balance studies and characterizing DS-1971a metabolites, in accordance with the Metabolites in Safety Testing guidance.

View Article and Find Full Text PDF

The Chk2-PKM2 axis promotes metabolic control of vasculogenic mimicry formation in p53-mutated triple-negative breast cancer.

Oncogene

August 2021

Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.

Vasculogenic mimicry (VM) formation, which participates in the process of neovascularization, is highly activated in p53-mutated triple-negative breast cancer (TNBC). Here, we show that Chk2 is negatively correlated with VM formation in p53-mutated TNBC. Its activation by DNA-damaging agents such as cisplatin, etoposide, and DPT reduces VM formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!