Spectroscopic Properties of Phase-Pure and Polytypic Colloidal Semiconductor Quantum Wires.

ACS Nano

Department of Chemistry, Washington University, St. Louis, Missouri 63130-4899, United States.

Published: October 2016

We report ensemble extinction and photoluminesence spectra for colloidal CdTe quantum wires (QWs) with nearly phase-pure, defect-free wurtzite (WZ) structure, having spectral line widths comparable to the best ensemble or single quantum-dot values, to the single polytypic (having WZ and zinc blende (ZB) alternations) QW values, and to those of two-dimensional quantum belts or platelets. The electronic structures determined from the multifeatured extinction spectra are in excellent agreement with the theoretical results of WZ QWs having the same crystallographic orientation. Optical properties of polytypic QWs of like diameter and diameter distribution are provided for comparison, which exhibit smaller bandgaps and broader spectral line widths. The nonperiodic WZ-ZB alternations are found to generate non-negligible shifts of the bandgap to intermediate energies between the quantum-confined WZ and ZB energies. The alternations and variations in the domain sizes result in inhomogeneous spectral line width broadening that may be more significant than that arising from the 12-13% diameter distributions within the QW ensembles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.6b06091DOI Listing

Publication Analysis

Top Keywords

quantum wires
8
spectral widths
8
spectroscopic properties
4
properties phase-pure
4
phase-pure polytypic
4
polytypic colloidal
4
colloidal semiconductor
4
semiconductor quantum
4
wires report
4
report ensemble
4

Similar Publications

Why do similar 1D-polyhedron-chain copper chloride semiconductors have 2-order-distinct luminescence quantum efficiencies?

J Chem Phys

December 2024

Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China.

The "green" copper halides with one-dimensional polyhedron chains are very interesting novel semiconductors. These weakly interacting parallel quantum wires (1D polyhedron chains) play key roles in their photophysical properties. Unlike Cs3Cu2I5, which has been much investigated, its homologous compounds Cs3Cu2Cl5 and CsCu2Cl3 remain less studied and their properties are controversial.

View Article and Find Full Text PDF

With the progressing miniaturization of electronic device components to improve circuit density while retaining or even reducing spatial requirements, single molecules employed as electric components define the lower limit of accessible structural width. To circumvent the typical exponential conductance decay for increasing length in molecule-based wires, topological states, which describe the occurrence of discontinuities of a bulk material's electronic structure confined to its surface, can be realized for molecules by the introduction of unpaired spins at the molecular termini. The resulting high conductance and reversed conductance decay are typically only observed for shorter molecules, as the terminal spins must be within the electronic coupling range to produce the desired effects.

View Article and Find Full Text PDF

This study investigates the use of photoluminescent amphiphilic porous silicon nanoparticles (αϕ-pSiNPs) as effective ultrasound (US) amplifiers for cancer sonodynamic theranostics. αϕ-pSiNPs were synthesized via a novel top-down approach involving porous silicon (pSi) films electrochemical etching, borate oxidation, and hydrophobic coating with octadecylsilane (C18), resulting in milling into nanoparticles with hydrophilic exteriors and hydrophobic interiors. These properties promote gas trapping and cavitation nucleation, significantly lowering the US cavitation threshold and resulting in selective destruction of cancer cells in the presence of nanoparticles.

View Article and Find Full Text PDF

Quantum-State Renormalization in Semiconductor Nanoparticles.

ACS Nano

December 2024

Department of Chemistry and Institute of Materials Science and Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63130, United States.

A single photoexcited electron-hole pair within a polar semiconductor nanocrystal (SNC) alters the charge screening and shielding within it. Perturbations of the crystal lattice and of the valence and conduction bands result, and the quantum-confinement states in a SNC shift uniquely with a dependence on the states occupied by the carriers. This shifting is termed quantum-state renormalization (QSR).

View Article and Find Full Text PDF

It is of great significance for the development of hydrogen energy technology by exploring the new-type and high-efficiency electrocatalysts (such as single atom catalysts (SACs)) for water splitting. In this paper, by combining interface engineering and doping engineering, a unique single atom iron (Fe)-doped carbon-coated nickel sulfide (NiS) quantum wires (NiS@Fe-SACs) is prepared as a high-performance bi-functional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Theoretical calculation and experimental results show that the addition of atomic Fe species can effectively adjust the electronic structure of sulfide, the interfacial electron transfer modulates the d-band center position, optimizing the transient state of the catalytic process and adsorption energy of hydrogen/oxygen intermediates, and greatly accelerates the kinetics of HER and OER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!