Despite significant progresses made on mass production of chemically exfoliated graphene, the quality, cost and environmental friendliness remain major challenges for its market penetration. Here, we present a fast and green exfoliation strategy for large scale production of high quality water dispersible few layer graphene through a controllable edge oxidation and localized gas bubbling process. Mild edge oxidation guarantees that the pristine sp lattice is largely intact and the edges are functionalized with hydrophilic groups, giving rise to high conductivity and good water dispersibility at the same time. The aqueous concentration can be as high as 5.0 mg mL, which is an order of magnitude higher than previously reports. The water soluble graphene can be directly spray-coated on various substrates, and the back-gated field effect transistor give hole and electron mobility of ~496 and ~676 cm V s, respectively. These results achieved are expected to expedite various applications of graphene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036305PMC
http://dx.doi.org/10.1038/srep34127DOI Listing

Publication Analysis

Top Keywords

edge oxidation
12
controllable edge
8
high quality
8
quality water
8
water dispersible
8
graphene
5
oxidation bubbling
4
bubbling exfoliation
4
exfoliation enable
4
enable fabrication
4

Similar Publications

Targeting the peculiarities of tumor tissue microenvironment different from normal tissue, such as lower pH and overexpression of hydrogen peroxide is the key to effective treatment. In this study, acid-responsive Z-scheme heterojunctions polyglycolated MoS/CoFeO (MoS = molybdenum disulfide, CoFeO = cobalt ferrite) was synthesized using a two-step hydrothermal method, designated as MSCO-PEG, guided by dual modes of photoacoustic imagine (PAI) and nuclear magnetic imaging (MRI). MSCO-PEG (PEG = polyethylene glycol) responded to the acidic environment of tumor tissues and overexpression of hydrogen peroxide to turn on multimodal synergistic treatment of tumor cells under near-infrared-II (NIR-II) illumination.

View Article and Find Full Text PDF

Low-temperature direct ammonia fuel cell (DAFC) stands out as a more secure technology than the hydrogen fuel cell system, while there is still a lack of elegant bottom-up synthesis procedures for efficient ammonia oxidation reaction (AOR) electrocatalysts. The widely accepted d-band center, even with consideration of the d-band width, usually fails to describe variations in AOR reactivity in many practical conditions, and a more accurate activity descriptor is necessary for a less empirical synthesis path. Herein, the upper d-band edge, ε, derived from the d-band model, is identified as an effective descriptor for accurately establishing the descriptor-activity relationship.

View Article and Find Full Text PDF

Background: Recent studies suggest that iron and neuroinflammation are key components of Alzheimer's Disease (AD) pathology. Ferrous Fe can cause oxidative stress and cellular toxicity, but it is unknown to what extent Fe is elevated in AD, in particular with the hippocampus. To answer this question, we quantified iron oxidation state in frozen human brain hippocampi.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Columbia University, New York, NY, USA.

Background: Genome-wide association studies (GWAS) have identified genetic loci that robustly associate with Alzheimer's Disease (AD), many of which are preferentially or exclusively expressed in innate immune cells. Among the identified AD risk genes is CD33: a transmembrane, sialic acid-binding protein expressed on the surface of myeloid cells including microglia, the innate immune cells of the CNS. The function of microglia is highly responsive to and regulated by metabolic changes, which allows them to rapidly change phenotype and maintain brain health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!