A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Removal of organic matter and ammonium from landfill leachate through different scenarios: Operational cost evaluation in a full-scale case study of a Flemish landfill. | LitMetric

Removal of organic matter and ammonium from landfill leachate through different scenarios: Operational cost evaluation in a full-scale case study of a Flemish landfill.

J Environ Manage

LIWET, Department of Industrial Biological Sciences, Ghent University, Campus Kortrijk, Graaf Karel de Goedelaan 5, B-8500, Kortrijk, Belgium; BIOMATH, Department of Mathematical Modeling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium. Electronic address:

Published: December 2017

Several scenarios are available to landfilling facilities to effectively treat leachate at the lowest possible cost. In this study, the performance of various leachate treatment sequences to remove COD and nitrogen from a leachate stream and the associated cost are presented. The results show that, to achieve 100% nitrogen removal, autotrophic nitrogen removal (ANR) or a combination of ANR and nitrification - denitrification (N-dN) is more cost effective than using only the N-dN process (0.58 €/m) without changing the leachate polishing costs associated with granular activated carbon (GAC). Treatment of N-dN effluent by ozonation or coagulation led to the reduction of the COD concentration by 10% and 59% respectively before GAC adsorption. This reduced GAC costs and subsequently reduced the overall treatment costs by 7% (ozonation) and 22% (coagulation). On the contrary, using Fenton oxidation to reduce the COD concentration of N-dN effluent by 63% increased the overall leachate treatment costs by 3%. Leachate treatment sequences employing ANR for nitrogen removal followed by ozonation or Fenton or coagulation for COD removal and final polishing with GAC are on average 33% cheaper than a sequence with N-dN + GAC only. When ANR is the preceding step and GAC the final step, choice of AOP i.e., ozonation or Fenton did not affect the total treatment costs which amounted to 1.43 (ozonation) and 1.42 €/m (Fenton). In all the investigated leachate treatment trains, the sequence with ANR + coagulation + GAC is the most cost effective at 0.94 €/m.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2016.09.055DOI Listing

Publication Analysis

Top Keywords

leachate treatment
16
nitrogen removal
12
treatment costs
12
leachate
8
treatment sequences
8
cost effective
8
n-dn effluent
8
cod concentration
8
ozonation fenton
8
treatment
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!