Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In previous work, a snake venom arginine esterase (SVAE), agkihpin from the venom of Gloydius halys Pallas, was isolated and its biochemical data including Mr, PI, amino acid components and sugar content was collected. Here, the agkihpin was cloned and further characterized and we found that agkihpin could promote ADP-induced platelets aggregation, hydrolyze fibrin, cleave Aα and Bβ chains of fibrinogen and reduce the thrombosis induced by thrombin. Moreover, agkihpin hydrolyzed TAME with optimum temperatures at 30 °C-45 °C, and the hydrolysis was inhibited by EDTA, PMSF, DTT and promoted by Ca, Fe, Mg, Zn. The sequence features of agkihpin were detected as follows: the N-terminal residues was determined as I(V)L(Y)GDDECNINE by protein sequencing; the ORF was determined as 705 bp, and the deduced amino acid sequence was identified by peptide mass fingerprinting; the cysteines, cleavage sites, active sites and substrate binding sites of snake venom thrombin-like enzyme (SVTLE), were all conserved in amino acid sequence of agkihpin; 2 Leu(Tyr), 4 Asn and 121 Ile in amino acid sequence of agkihpin were first found in the amino acid sequences of SVTLEs. These findings indicated that agkihpin is a novel SVTLE. What's more, due to its several advantages of fibrino(gen)olytic and thrombosis-reduced activities, and devoid of bleeding risk, agkihpin may be developed into a thrombolytic drug in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2016.09.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!