Despite growing concerns over the potential for hydraulic fracturing to impact drinking water resources, there are limited data available to identify chemicals used in hydraulic fracturing fluids that may pose public health concerns. In an effort to explore these potential hazards, a multi-criteria decision analysis (MCDA) framework was employed to analyze and rank selected subsets of these chemicals by integrating data on toxicity, frequency of use, and physicochemical properties that describe transport in water. Data used in this analysis were obtained from publicly available databases compiled by the United States Environmental Protection Agency (EPA) as part of a larger study on the potential impacts of hydraulic fracturing on drinking water. Starting with nationwide hydraulic fracturing chemical usage data from EPA's analysis of the FracFocus Chemical Disclosure Registry 1.0, MCDAs were performed on chemicals that had either noncancer toxicity values (n=37) or cancer-specific toxicity values (n=10). The noncancer MCDA was then repeated for subsets of chemicals reported in three representative states (Texas, n=31; Pennsylvania, n=18; and North Dakota, n=20). Within each MCDA, chemicals received scores based on relative toxicity, relative frequency of use, and physicochemical properties (mobility in water, volatility, persistence). Results show a relative ranking of these chemicals based on hazard potential, and provide preliminary insight into chemicals that may be more likely than others to impact drinking water resources. Comparison of nationwide versus state-specific analyses indicates regional differences in the chemicals that may be of more concern to drinking water resources, although many chemicals were commonly used and received similar overall hazard rankings. Several chemicals highlighted by these MCDAs have been reported in groundwater near areas of hydraulic fracturing activity. This approach is intended as a preliminary analysis, and represents one possible method for integrating data to explore potential public health impacts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776703 | PMC |
http://dx.doi.org/10.1016/j.scitotenv.2016.08.167 | DOI Listing |
J Hazard Mater
January 2025
Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Shanghai 200092, China.
A new in situ fracturing-enhanced oxidative remediation approach was recommended in this study to achieve rapid and efficient remediation of low-permeability contaminated sites. The objective of this study was to evaluate the effects of permeability and potassium permanganate (KMnO) concentration on the oxidation effectiveness and kinetics of KMnO in phenanthrene (PHE)-contaminated soil through rigid-wall hydraulic conductivity tests and a series of laboratory experiments. The results indicate that for various low-permeability contaminated soils, there was a critical KMnO concentration to significantly reduce the remediation time and a critical Darcy velocity to meet remediation goals.
View Article and Find Full Text PDFIt is a common occurrence in the fracture processes of deep carbonate reservoirs that the fracturing construction pressure during hydraulic fracturing operation exceeds 80 MPa. The maximum pumping pressure is determined by the rated pressure of the pumping pipe equipment and the reservoir characteristics, which confine the fracture to the target area. When the pump pressure exceeds the safety limit, hydraulic fracturing has to reduce the construction displacement to prevent potential accidents caused by overpressure.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Petroleum and Energy Engineering, The American University in Cairo, New Cairo 11835, Egypt.
As hydraulic fracturing becomes increasingly prevalent in the oil and gas industry, there is a growing need to develop more cost-effective and sustainable technologies, particularly concerning the materials used. Proppants play a vital role in hydraulic fracturing by ensuring that fractures remain conductive and can withstand the pressure exerted by the surrounding strata. One key parameter for evaluating proppants is their compressive strength, especially under harsh environmental conditions.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2025
Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
The rapid growth of unconventional natural gas development (UNGD), also known as hydraulic fracturing, has raised concerns of potential exposures to hazardous chemicals. Few studies have examined the risk of childhood cancer from exposure to UNGD. A case-control study included 498 children diagnosed with leukemia, lymphoma, central nervous system neoplasms, and malignant bone tumors during the period 2010-2019 identified through the Pennsylvania Cancer Registry.
View Article and Find Full Text PDFSci Rep
January 2025
School of petroleum engineering, Yangtze University, Wuhan, 430100, China.
Given the suboptimal physical properties and distinctive geological conditions of deep coalbed methane reservoirs, any reservoir damage that occurs becomes irreversible. Consequently, the protection of these deep coalbed methane reservoirs is of paramount importance. This study employs experimental techniques such as scanning electron microscopy, X-ray diffraction, and micro-CT imaging to conduct a comprehensive analysis of the pore structure, mineral composition, fluid characteristics, and wettability of coal seams 3# and 15# in the northern Qinshui Basin of China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!