The liver and the small intestine are closely related in the processes of drug absorption, metabolism and excretion via the enterohepatic circulation. Small intestinal ulcers are a serious adverse effect commonly occurring in patients taking nonsteroidal anti-inflammatory drugs. However, the influence of small intestinal ulcers on drug metabolism has not been established. This study examined the expressional changes of cytochrome P450 (CYP) in the liver using an indomethacin-induced small intestinal ulcer rat model and in cultured cells. After the administration of indomethacin to rats, ulcers were observed in the small intestine and expression of CYP3A1, the major isoform of hepatic CYP, was significantly down-regulated in the liver, accompanied by increased expression of inducible nitric oxide synthase, tumor necrosis factor α, interleukin (IL)-1β and IL-6, in the small intestine and the liver. The indomethacin-induced small intestinal ulceration, the increase in inflammatory mediators in the small intestine and the liver, and the down-regulation of CYP3A1 expression in the liver were inhibited by co-administration of ampicillin, an antibacterial agent. In the human hepatic HepG2 cell line, IL-1β, IL-6 and NOC-18, an NO donor, caused down-regulation of CYP3A4, the major isoform of human CYP3A. Thus, this study suggests that after indomethacin treatment small intestinal ulcers cause the down-regulation of CYP3A1 in the rat liver through an increase in ulcer-derived inflammatory mediators. Copyright © 2016 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bdd.2042DOI Listing

Publication Analysis

Top Keywords

small intestinal
24
intestinal ulcers
16
small intestine
16
indomethacin-induced small
12
small
10
cyp3a1 expression
8
rat model
8
liver indomethacin-induced
8
major isoform
8
il-1β il-6
8

Similar Publications

Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics.

View Article and Find Full Text PDF

Oyster powder supplementation enhances immune function in mice partly through modulating the gut microbiota and arginine metabolism.

Food Funct

January 2025

State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.

Oysters are well-known for their health benefits such as immuno-modulatory functions. The intestinal microbiome serves as a key mediator between diet and immune regulation. This study aimed to investigate whether oyster consumption could alleviate cyclophosphamide (Cy)-induced immunosuppression by promoting intestinal homeostasis.

View Article and Find Full Text PDF

Th2 cells must sense and adapt to the tissue milieu in order to provide protective host immunity and tissue repair. Here, we examined the mechanisms promoting Th2 cell differentiation and function within the small intestinal lamina propria. Single cell RNA-seq analyses of CD4 T cells from the small intestinal lamina propria of helminth infected mice revealed high expression of the gene , encoding the transcription factor hypoxia-inducible factor 2a (HIF2α).

View Article and Find Full Text PDF

Mucus plays an integral role for the barrier function of many epithelial tissues. In the human airways, mucus is constantly secreted to capture inhaled microbes and pollutants and cleared away through concerted ciliary motion. Many important respiratory diseases exhibit altered mucus flowability and impaired clearance, contributing to respiratory distress and increased risk of infections.

View Article and Find Full Text PDF

Evaluation of the Effect of Bacteriophages and Organic Acids as a Feed Additive to Reduce Salmonella enteritidis in Challenged Chickens.

J Anim Physiol Anim Nutr (Berl)

January 2025

Department Animal Science, Higher Education Complex of Torbat-e Jam, Torbat-e Jam, Iran.

This study aimed to compare the effects of dietary supplementation of bacteriophage (BP) and acidifiers on performance, meat quality, morphology, and intestinal microbiota in chickens challenged and unchallenged with Salmonella enteritidis (SE) and also to investigate the possibility of replacing them in the diet with antibiotics. A total of 1760 male Ross (308) chicks were randomly assigned to 11 dietary treatments (8 pens/with 20 male chickens in each). Dietary treatments were as follows: SE-uninfected (negative control (NC), a basal diet without supplemention; NC+ 500 g/t BP (NBP1); NC+ 1000 g/t BP (NBP2); NC+ 300 mg/kg acidifier A (NAA); NC+ 300 mg/kg acidifier B (NAB)) and SE-infected (positive control (PC), a basal diet without supplemention; PC+ 40 mg/kg Antibiotic enrofloxacin (PA); PC+ 500 g/t BP (PBP1); PC+ 1000 g/t BP (PBP2); PC+ 3000 mg/kg acidifier A (PAA); PC+ 3000 mg/kg acidifier B (PAB)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!