We evaluate here the performance of four models of cross-situational word learning: two global models, which extract and retain multiple referential alternatives from each word occurrence; and two local models, which extract just a single referent from each occurrence. One of these local models, dubbed Pursuit, uses an associative learning mechanism to estimate word-referent probability but pursues and tests the best referent-meaning at any given time. Pursuit is found to perform as well as global models under many conditions extracted from naturalistic corpora of parent-child interactions, even though the model maintains far less information than global models. Moreover, Pursuit is found to best capture human experimental findings from several relevant cross-situational word-learning experiments, including those of Yu and Smith (), the paradigm example of a finding believed to support fully global cross-situational models. Implications and limitations of these results are discussed, most notably that the model characterizes only the earliest stages of word learning, when reliance on the co-occurring referent world is at its greatest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5366095 | PMC |
http://dx.doi.org/10.1111/cogs.12416 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!