Photoinduced electron transfer was studied in dyads (dyad1 and dyad2) containing triphenylamine (MTA) and naphthalenediimide (MNDI) linked with oligo(phenyleneethynylene) dispersed in rigid polymer matrices of polystyrene (PS), poly(vinyl chloride), and poly(methyl methacrylate). Photoexcitation of these dyads yielded long-lived charge-separated (CS) states involving MTA and MNDI. The quantum yields of charge separation in dyad1 and dyad2 were approximately 0.4 and 0.3, respectively, in the polymer matrices. The CS lifetime for dyad2 in PS was longer (400 ms) than those in poly(vinyl chloride) (120 ms) and poly(methyl methacrylate) (65 ms) at 298 K. In addition, CS state had a very long lifetime of 5.4 s in glassy toluene at 100 K. Below glass transition temperatures, polymer side chain motions with various relaxation rates should affect the charge recombination processes. The energy gap (ΔG) and outer-sphere reorganization energy (λ) in the charge recombination process were estimated using a slow-frequency component for dielectric constants. By use of ΔG and λ values, the matrix dependence of the CS lifetimes was successfully rationalized based on Marcus theory, and the charge recombination process in PS with low polarity and high polarizability should be in a deeper inverted region than the other polymer matrices. It also suggested that the rigidity of the polymer effectively suppressed intramolecular motions promoting the charge recombination process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.6b07705DOI Listing

Publication Analysis

Top Keywords

polymer matrices
16
charge recombination
16
recombination process
12
charge-separated states
8
dyad1 dyad2
8
polyvinyl chloride
8
polymethyl methacrylate
8
polymer
6
charge
5
long-lived photoinduced
4

Similar Publications

Design and Characterization of Novel Polymeric Hydrogels with Protein Carriers for Biomedical Use.

Int J Mol Sci

December 2024

Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland.

Hydrogels are three-dimensional polymeric matrices capable of absorbing significant amounts of water or biological fluids, making them promising candidates for biomedical applications such as drug delivery and wound healing. In this study, novel hydrogels were synthesized using a photopolymerization method and modified with cisplatin-loaded protein carriers, as well as natural extracts of nettle () and chamomile ( L.).

View Article and Find Full Text PDF

The aim of this study was to compare the mechanical properties of carbon-fiber-reinforced polymer (CFRP) composites produced using three popular technologies. The tests were performed on composites produced from prepregs in an autoclave, the next variant is composites produced using the infusion method, and the third variant concerns composites produced using the vacuum-assisted hand lay-up method. For each variant, flat plates with dimensions of 1000 mm × 1000 mm were produced while maintaining similar material properties and fabric arrangement configuration.

View Article and Find Full Text PDF

Carbon-fiber composites with thermoplastic matrices offer many processing and performance benefits in aerospace applications, but the long relaxation times of polymers make it difficult to predict how the structure of the matrix depends on its chemistry and how it was processed. Coarse-grained models of polymers can enable access to these long-time dynamics, but can have limited applicability outside the systems and state points that they are validated against. Here we develop and validate a minimal coarse-grained model of the aerospace thermoplastic poly(etherketoneketone) (PEKK).

View Article and Find Full Text PDF

The increasing demand for high-performance materials in industrial applications highlights the need for composites with enhanced mechanical and tribological properties. Basalt fiber-reinforced polymers (BFRP) are promising materials due to their superior strength-to-weight ratio and environmental benefits, yet their wear resistance and tensile performance often require further optimization. This study examines how adding copper (Cu) powder to epoxy resin influences the mechanical and tribological properties of BFRP composites.

View Article and Find Full Text PDF

Analysis of Electrical Conductivity in Commercial Adhesives Incorporating Graphene Nanoplatelets for Industrial Applications.

Polymers (Basel)

December 2024

E.T.S. de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid (España), 28040 Madrid, Spain.

Polymers are often insulators, but this not a universal intrinsic characteristic of all polymers. For this work, the adhesives used, epoxy and polyurethane, do demonstrate this insulating characteristic. However, there has been significant interest in the development of conductive polymers, specifically adhesives, because of the potential properties and ease of processing of these polymers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!