Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers.

Nat Commun

Laboratory for Bio- and Nano-Instrumentation, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Batiment BM 3109 Station 17, 1015 Lausanne, Switzerland.

Published: September 2016

The sensitivity and detection speed of cantilever-based mechanical sensors increases drastically through size reduction. The need for such increased performance for high-speed nanocharacterization and bio-sensing, drives their sub-micrometre miniaturization in a variety of research fields. However, existing detection methods of the cantilever motion do not scale down easily, prohibiting further increase in the sensitivity and detection speed. Here we report a nanomechanical sensor readout based on electron co-tunnelling through a nanogranular metal. The sensors can be deposited with lateral dimensions down to tens of nm, allowing the readout of nanoscale cantilevers without constraints on their size, geometry or material. By modifying the inter-granular tunnel-coupling strength, the sensors' conductivity can be tuned by up to four orders of magnitude, to optimize their performance. We show that the nanoscale printed sensors are functional on 500 nm wide cantilevers and that their sensitivity is suited even for demanding applications such as atomic force microscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052671PMC
http://dx.doi.org/10.1038/ncomms12487DOI Listing

Publication Analysis

Top Keywords

cantilevers sensitivity
8
sensitivity detection
8
detection speed
8
direct-write nanoscale
4
nanoscale printing
4
printing nanogranular
4
nanogranular tunnelling
4
tunnelling strain
4
sensors
4
strain sensors
4

Similar Publications

Tailoring Super-Performed Chemo-Sensor via Simulation-Modeling and MEMS-Screening.

Adv Sci (Weinh)

January 2025

State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai, 200050, China.

Chemo-sensor designing involves a time-consuming trial-and-error screening process, which commonly cannot lead to optimal SR features (Sensitivity, Selectivity, Speed, Stability, and Reversibility). Due to strong path dependence on reported groups/mechanisms, conventional chemo-sensors often fail to meet critical application demands, especially in achieving high reversibility without compromising other features. Here, a three-step screen and design strategy is developed for gaining customized chemo-sensors, through Structure modeling; MEMS (Micro Electro Mechanical Systems) analysis, and Performance verification.

View Article and Find Full Text PDF

Femtosecond Laser Introduced Cantilever Beam on Optical Fiber for Vibration Sensing.

Sensors (Basel)

November 2024

Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China.

An all-fiber vibration sensor based on the Fabry-Perot interferometer (FPI) is proposed and experimentally evaluated in this study. The sensor is fabricated by introducing a Fabry-Perot cavity to the single-mode fiber using femtosecond laser ablation. The cavity and the tail act together as a cantilever beam, which can be used as a vibration receiver.

View Article and Find Full Text PDF

Cantilever-enhanced dual-comb photoacoustic spectroscopy.

Photoacoustics

August 2024

State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China.

Dual-comb photoacoustic spectroscopy (DC-PAS) advances spectral measurements by offering high-sensitivity and compact size in a wavelength-independent manner. Here, we present a novel cantilever-enhanced DC-PAS scheme, employing a high-sensitivity fiber-optic acoustic sensor based on an optical cantilever and a non-resonant photoacoustic cell (PAC) featuring a flat-response characteristic. The dual comb is down-converted to the audio frequency range, and the resulting multiheterodyne sound waves from the photoacoustic effect, are mapped into the response frequency region of the optical cantilever microphone.

View Article and Find Full Text PDF

To clarify the structural safety and stability of partial cable-stayed bridges with multiple towers and high piers during the construction stage, a finite element analysis model of the entire construction process was established using a five-tower, six-span, partial cable-stayed bridge in Shaanxi Province, China, as the engineering background. Linear elasticity and nonlinear stability analyses were carried out in the following key construction stages: bare tower construction, maximum cantilever construction without cables, maximum cantilever construction with cables, side-span closure, secondary mid-span closure, mid-span closure, and second-phase paving. A sensitivity analysis of the structural parameters (the main tower stiffness, main pier stiffness, and main beam stiffness) was conducted.

View Article and Find Full Text PDF

Gold Flake-Enabled Miniature Capacitive Picobalances.

Small Methods

December 2024

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

Measurement of masses of microscale objects or weak force with ultrahigh sensitivity (down to nanogram/piconewton level) and compact configuration is highly desired for fundamental research and applications in various disciplines. Here, by using freestanding gold flakes with high reflectivity (≈98% at 980 nm) as the sample tray and silica microfibers with extremely low spring constant (≈0.05 mN m) as the cantilever beams, miniature capacitive balances are reported with piconewton-level detection limit (picobalances) and reliable radiation force-based calibration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!