Targeting Gliomas: Can a New Alkylating Hybrid Compound Make a Difference?

ACS Chem Neurosci

Research Institute for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Department of Pharmaceutical Chemistry and Therapeutics, and ∥Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa , Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal.

Published: January 2017

AI Article Synopsis

  • Glioblastoma (GBM) is a highly aggressive brain tumor in adults, and the traditional treatment with Temozolomide (TMZ) has not been very effective due to GBM's resistance and invasiveness.
  • Researchers developed a new hybrid compound (HYBCOM) that combines a TMZ analogue with valproic acid, aiming to improve efficacy and reduce resistance in glioma treatment.
  • HYBCOM showed greater cytotoxic effects on glioma cells compared to TMZ, enhancing the cells' sensitivity and reducing their ability to migrate, without increasing drug resistance proteins, suggesting it could be a more effective treatment option for GBM.

Article Abstract

Glioblastoma (GBM) is the most common and aggressive type of brain tumor in adults. The triazene Temozolomide (TMZ), an alkylating drug, is the classical chemotherapeutic agent for gliomas, but has been disappointing against the highly invasive and resistant nature of GBM. Hybrid compounds may open new horizons within this challenge. The multicomponent therapeutic strategy here used resides on a combination of two repurposing drugs acting by different but potentially synergistic mechanisms, improved efficacy, and lower resistance effects. We synthesized a new hybrid compound (HYBCOM) by covalently binding a TMZ analogue to valproic acid, a histone deacetylase inhibitor drug that was shown to sensitize TMZ-resistant glioma cells. Advantages of this new molecule as compared to TMZ, in terms of chemotherapeutic efficacy, were investigated. Our results evidenced that HYBCOM more efficiently decreased the viability and proliferation of the GL261 glioma cells, while showing to better target the tumor cells than the functionally normal astrocytes. Increased cytotoxicity by HYBCOM may be a consequence of the improved autophagic process observed. Additionally, HYBCOM changed the morphology of GL261 cells into a nonpolar, more rounded shape, impairing cell migration ability. Most interesting, and in opposite to TMZ, cells exposed to HYBCOM did not enhance the expression of drug resistance proteins, a major issue in the treatment of GBM. Overall, our studies indicate that HYBCOM has promising chemotherapeutic benefits over the classical TMZ, and future studies should assess if the treatment translates into efficacy in glioblastoma experimental models and reveal clinical benefits in GBM patients.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.6b00169DOI Listing

Publication Analysis

Top Keywords

hybrid compound
8
glioma cells
8
hybcom
6
tmz
5
cells
5
targeting gliomas
4
gliomas alkylating
4
alkylating hybrid
4
compound difference?
4
difference? glioblastoma
4

Similar Publications

Lignan-phloroglucinol hybrids with an unprecedented beadlike core from the leaves of .

Org Biomol Chem

January 2025

Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.

(±)-Melichuniiones A and B (1 and 2), two novel enantiomeric pairs of lignan-phloroglucinol hybrids with an unprecedented beadlike core were isolated from the leaves of , together with new analogues 3-6. Compounds 1 and 2 possess a unique dispiro [furan-2,5'-cyclopenta[]furan-2',3''-furan] 5/5/5/5 tetracyclic skeleton. Their structures were established by extensive spectroscopic analyses, single crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations.

View Article and Find Full Text PDF

Recent advances in cancer therapy have been made possible by monoclonal antibodies, domain antibodies, antibody drug conjugates, The most impact has come from controlling cell cycle checkpoints through checkpoint inhibitors. This manuscript explores the potential of a series of novel -benzyl isatin based hydrazones (5-25), which were synthesized and evaluated as anti-breast cancer agents. The synthesized hydrazones of -benzyl isatin were screened against two cell lines, the MDA-MB-231 breast cancer cell line and the MCF-10A breast epithelial cell line.

View Article and Find Full Text PDF

Organic-inorganic hybrid ferroelectric compounds of the halobismuthate family have emerged as a focal point of research owing to their reduced toxicity and distinctive optical characteristics. This study presents a novel ammonium hybrid perovskite, [BPMBDMA]·[Bi2Br9], which exhibits both ferro- and piezoelectric properties and crystallizes in the polar noncentrosymmetric 2 space group. The nonlinear optical (NLO) activity of [BPMBDMA]·[Bi2Br9] was corroborated through second harmonic generation measurements evidencing its noncentrosymmetric structure, which was further substantiated by piezoresponse force microscopy analyses.

View Article and Find Full Text PDF

Structural Modifications and Prospects of Histone Deacetylase (HDAC) Inhibitors in Cancer.

Curr Med Chem

January 2025

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.

Histone deacetylases (HDACs) play a crucial role in the regulation of cancer progression and have emerged as key targets for antitumor therapy. Histone Deacetylase Inhibitors (HDACis) effectively suppress tumor cell proliferation, induce apoptosis, and cause cell cycle arrest, demonstrating broad-spectrum antitumor activity. This article primarily focuses on enhancing the selectivity of HDACis through structural modification using natural compounds.

View Article and Find Full Text PDF

While gas chromatography mass spectrometry (GC-MS) has long been used to identify compounds in complex mixtures, this process is often subjective and time-consuming and leaves a large fraction of seemingly good-quality spectra unidentified. In this work, we describe a set of new mass spectral library-based methods to assist compound identification in complex mixtures. These methods employ mass spectral uniqueness and compound ubiquity of library entries alongside noise reduction and automated comparison of retention indices to library compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!