In vivo and in vitro effects of selected antioxidants on rabbit meat microbiota.

Meat Sci

Laboratorio di Zootecnia, Nutrizione ed Alimenti, Dipartimento di Scienze Mediche Veterinarie, Via Tolara di Sopra 50, 40064 Ozzano Emilia (BO), Italy.

Published: January 2017

The purpose of this study was to investigate the effect of dietary vitamin E or EconomasE™ supplementation on the growth of several background/pathogenic bacteria on rabbit carcasses and hamburgers during refrigerated storage. For 51days, 270 New Zealand rabbits received either a basal diet, or experimental diets enriched with 100 or 200mg/kg of vitamin E or EconomasE™. The bacteria studied were Salmonella, Listeria monocytogenes, Pseudomonas, Enterobacteriaceae, Escherichia coli, coagulase-positive staphylococci, plus both mesophilic and psychrotrophic aerobes. The growth of Listeria monocytogenes on contaminated patties was evaluated through a challenge test. The potential protective or antimicrobial effect of vitamin E or EconomasE™ on Listeria monocytogenes or Pseudomonas aeruginosa was assessed in vitro. Diet did not influence the concentrations of bacteria found on rabbit carcasses and developing on hamburgers. Vitamin E (in vivo and in vitro) and EconomasE™ in vivo had a protective antioxidant role, while EconomasE™ in vitro had strong antibacterial activity against Listeria monocytogenes, but not against Pseudomonas aeruginosa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meatsci.2016.09.004DOI Listing

Publication Analysis

Top Keywords

listeria monocytogenes
16
vitamin economase™
12
monocytogenes pseudomonas
12
vivo vitro
8
bacteria rabbit
8
rabbit carcasses
8
pseudomonas aeruginosa
8
economase™
5
vitro effects
4
effects selected
4

Similar Publications

We present the genome of BDSA isolated from ready-to-eat (RTE) meat collected in Dhaka, Bangladesh. The genome displays the Listeria pathogenicity island 1 and virulence, stress response, and antimicrobial resistance genes. It was phylogenetically classified as ST7, and clustered with serotype 1/2a belonging to lineage II.

View Article and Find Full Text PDF

The aim of the present research was to evaluate the effect of Urtica dioica L. (nettle) essential oil (in the forms of Pickering nanoemulsion (NEO) and free (EO)) on microbial, chemical and sensory changes of pizza cheese stored at 4 °C for 12 days. For this purpose, Escherichia coli and Listeria monocytogenes were inoculated into pizza cheese.

View Article and Find Full Text PDF

Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties.

Foods

January 2025

Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil.

Polysaccharides represent the most abundant biopolymers in agri-food wastes and thus are the most studied polymers to produce biodegradable films for use in packaging. Starch is among the major polysaccharides extracted from food and agricultural waste that have been used as precursor material for film production. Therefore, the present study aimed at producing an active film with antimicrobial properties using starch extracted from cassava waste and oil extracted from cloves.

View Article and Find Full Text PDF

The immobilisation of essential oil components (EOCs) on food-grade supports is a promising strategy for preserving liquid foods without the drawbacks of direct EOC addition such as poor solubility, high volatility, and sensory alterations. This study presents a novel method for covalently immobilising EOCs, specifically thymol and carvacrol, on SiO particles (5-15 µm) using the Mannich reaction. This approach simplifies conventional covalent immobilisation techniques by reducing the steps and reagents while maintaining antimicrobial efficacy and preventing compound migration.

View Article and Find Full Text PDF

Integrating Bacteriocins and Biofilm-Degrading Enzymes to Eliminate Persistence.

Int J Mol Sci

January 2025

Characterization and Interventions for Foodborne Pathogens, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.

is a Gram-positive bacterium causing listeriosis, a severe infection responsible for significant morbidity and mortality globally. Its persistence on food processing surfaces via biofilm formation presents a major challenge, as conventional sanitizers and antimicrobials exhibit limited efficacy against biofilm-embedded cells. This study investigates a novel approach combining an engineered polysaccharide-degrading enzyme (CAase) with a bacteriocin (thermophilin 110) produced by .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!