AI Article Synopsis

  • Armadillo repeat proteins (ArmRPs) can recognize and bind to target peptides through modular repeats that complement specific peptide segments, allowing for the creation of specialized binding proteins without extensive library selection.
  • The structure of ArmRPs consists of stacked repeats forming a superhelical shape, and research identified a specific repeat pair from yeast importin-α that exhibits optimal curvature for consistent peptide binding.
  • Computational design of ArmRPs (dArmRPs) involved stabilizing mutations to enhance their structure, and while experimental results showed some deviations, integrating natural binding pockets into dArmRPs produced high-affinity binders for target peptides.

Article Abstract

Armadillo repeat proteins (ArmRPs) recognize their target peptide in extended conformation and bind, in a first approximation, two residues per repeat. Thus, they may form the basis for building a modular system, in which each repeat is complementary to a piece of the target peptide. Accordingly, preselected repeats could be assembled into specific binding proteins on demand and thereby avoid the traditional generation of every new binding molecule by an independent selection from a library. Stacked armadillo repeats, each consisting of 42 aa arranged in three α-helices, build an elongated superhelical structure. Here, we analyzed the curvature variations in natural ArmRPs and identified a repeat pair from yeast importin-α as having the optimal curvature geometry that is complementary to a peptide over its whole length. We employed a symmetric in silico design to obtain a uniform sequence for a stackable repeat while maintaining the desired curvature geometry. Computationally designed ArmRPs (dArmRPs) had to be stabilized by mutations to remove regions of higher flexibility, which were identified by molecular dynamics simulations in explicit solvent. Using an N-capping repeat from the consensus-design approach, two different crystal structures of dArmRP were determined. Although the experimental structures of dArmRP deviated from the designed curvature, the insertion of the most conserved binding pockets of natural ArmRPs onto the surface of dArmRPs resulted in binders against the expected peptide with low nanomolar affinities, similar to the binders from the consensus-design series.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2016.09.012DOI Listing

Publication Analysis

Top Keywords

computationally designed
8
armadillo repeat
8
repeat proteins
8
target peptide
8
natural armrps
8
curvature geometry
8
structures darmrp
8
repeat
7
peptide
5
designed armadillo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!