Optimization of in vivo DNA delivery with NickFect peptide vectors.

J Control Release

Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Nooruse, 50411 Tartu, Estonia; Department of Neurochemistry, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden.

Published: November 2016

As the field of gene therapy progresses, an increasingly urgent need has arisen for efficient and non-toxic vectors for the in vivo delivery of nucleic acids. Cell-penetrating peptides (CPP) are very efficient transfection reagents in vitro, however, their application in vivo needs improvement. To enhance in vivo transfection we designed various CPPs based on previous knowledge of internalization studies and physiochemical properties of NickFect (NF) nanoparticles. We show that increment of the helicity of these Transportan10 analogues improves the transfection efficiency. We rationally design by modifying the net charge and the helicity of the CPP a novel amphipathic α-helical peptide NF55 for in vivo application. NF55 condenses DNA into stable nanoparticles that are resistant to protease degradation, promotes endosomal escape, and transfects the majority of cells in a large cell population. We demonstrate that NF55 mediates DNA delivery in vivo with gene induction efficiency that is comparable to commercial transfection reagents. In addition to gene induction in healthy mice, NF55/DNA nanoparticles showed promising tumor transfection in various mouse tumor models, including an intracranial glioblastoma model. The efficiency of NF55 to convey DNA specifically into tumor tissue increased even further after coupling a PEG2000 to the peptide via a disulphide-bond. Furthermore, a solid formulation of NF55/DNA displayed an excellent stability profile without additives or special storage conditions. Together, its high transfection efficacy and stability profile make NF55 an excellent vector for the delivery of DNA in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2016.09.022DOI Listing

Publication Analysis

Top Keywords

dna delivery
8
transfection reagents
8
gene induction
8
stability profile
8
vivo
6
transfection
6
dna
5
nf55
5
optimization vivo
4
vivo dna
4

Similar Publications

Premature and low birth weight neonates often struggle with oral intake due to immaturity or respiratory distress. Forkhead box protein 2 gene () is predicted to influence oral feeding ability in newborns, but studies assessing the role of this gene in influencing oral feeding ability are limited. The aim of this study was to investigate the role of gene polymorphism, particularly single nucleotide polymorphism (SNP) rs17137124, on the duration of orogastric tube (OGT) use in moderate to late preterm neonates.

View Article and Find Full Text PDF

Antibody functionalized curcuma-derived extracellular vesicles loaded with doxorubicin overcome therapy-induced senescence and enhance chemotherapy.

J Control Release

January 2025

Department of General Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China; Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China. Electronic address:

Conventional cancer treatments often induce a sustained DNA damage response (DDR) in tumor cells, leading to therapy-induced senescence (TIS), characterized by permanent cell cycle arrest and resistance to apoptosis. These senescent cells secrete senescence-associated secretory phenotypes (SASP), which can promote tumor progression and create an immunosuppressive microenvironment. This study introduces a novel approach to enhance chemotherapy efficacy by using functionalized curcuma-derived extracellular vesicles (DR5-CNV/DOX) to target and eliminate senescent tumor cells and inhibit their SASP.

View Article and Find Full Text PDF

Development of a StIW111C-based bioresponsive pore-forming conjugate for permeabilizing the endosomal membrane.

Int J Biol Macromol

January 2025

Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:

Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.

View Article and Find Full Text PDF

Macrophage-specific in vivo RNA editing promotes phagocytosis and antitumor immunity in mice.

Sci Transl Med

January 2025

College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

Macrophages play a central role in antitumor immunity, making them an attractive target for gene therapy strategies. However, macrophages are difficult to transfect because of nucleic acid sensors that can trigger the degradation of foreign plasmid DNA. Here, we developed a macrophage-specific editing (MAGE) system by which compact plasmid DNA encoding a CasRx editor can be delivered to macrophages by a poly(β-amino ester) (PBAE) carrier to bypass the DNA sensor and enable RNA editing in vitro and in vivo.

View Article and Find Full Text PDF

Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!