A new fluorescence-based method for characterizing in vitro aerosol exposure systems.

Toxicol In Vitro

Philip Morris International R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, CH-2000, Neuchatel, Switzerland.

Published: February 2017

Knowledge of how an in vitro aerosol exposure system delivers a test aerosols to the biological test system is among the most crucial prerequisites for the interpretation of exposure experiments and relies on detailed exposure system characterization. Although various methods for this purpose exist, many of them are time consuming, require extensive instrumentation, or offer only limited ability to assess the performance of the system under experimental settings. We present the development and evaluation of a new, highly robust and sensitive fluorometry-based method for assessing the particle size specific delivery of liquid aerosols. Glycerol aerosols of different mean particle sizes and narrow size distributions, carrying the fluorophore disodium fluorescein, were generated in a condensation monodisperse aerosol generator. Their detailed characterization confirmed their stability and the robustness and reproducibility of their generation. Test exposures under relevant experimental settings in the Vitrocell 24/48 aerosol exposure system further confirmed their feasibility for simulating exposures and the high sensitivity of the method. Potential applications of the presented method range from the experimental confirmation of computationally simulated particle dynamics, over the characterization of in vitro aerosol exposure systems, to the detailed description of aerosol delivery in test systems of high complexity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2016.09.018DOI Listing

Publication Analysis

Top Keywords

aerosol exposure
16
vitro aerosol
12
exposure system
12
exposure systems
8
experimental settings
8
aerosol
6
exposure
6
system
5
fluorescence-based method
4
method characterizing
4

Similar Publications

Multiple human and plant pathogens are dispersed and transmitted as bioaerosols (e.g., , SARS-CoV-2, , , spp.

View Article and Find Full Text PDF

Resuspended particles from human activities can contribute to pathogen exposure via airborne fomite contamination in built environments. Studies investigating the dissemination of resuspended viruses are limited. The goal of this study was to explore viral dissemination after aerosolized resuspension via human activities on indoor flooring.

View Article and Find Full Text PDF

Background: Tube thoracostomy, utilized through conventional methodologies in the context of pleural disorders such as pleural effusion and pneumothorax, constitutes one of the primary therapeutic interventions. Nonetheless, it is imperative to recognize that invasive procedures, including tube thoracostomy, are classified as aerosol-generating activities during the management of pleural conditions in patients afflicted with COVID-19, thus raising substantial concerns regarding the potential exposure of healthcare personnel to the virus. The objective of this investigation was to assess the SARS-CoV-2 viral load by detecting viral RNA in pleural drainage specimens from patients who underwent tube thoracostomy due to either pleural effusion or pneumothorax.

View Article and Find Full Text PDF

The objective of this study is to investigate the potential mutagenic effects of the exposure of mice to aerosols produced from the component liquids of an electronic nicotine delivery system (ENDS). The use of electronic cigarettes (e-cigs) and ENDSs has increased tremendously over the past two decades. From what we know to date, ENDSs contain much lower levels of known carcinogens than tobacco smoke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!