A Nanofluidic Biosensor Based on Nanoreplica Molding Photonic Crystal.

Nanoscale Res Lett

School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Published: December 2016

A nanofluidic biosensor based on nanoreplica molding photonic crystal (PC) was proposed. UV epoxy PC was fabricated by nanoreplica molding on a master PC wafer. The nanochannels were sealed between the gratings on the PC surface and a taped layer. The resonance wavelength of PC-based nanofluidic biosensor was used for testing the sealing effect. According to the peak wavelength value of the sensor, an initial label-free experiment was realized with R6g as the analyte. When the PC-based biosensor was illuminated by a monochromatic light source with a specific angle, the resonance wavelength of the sensor will match with the light source and amplified the electromagnetic field. The amplified electromagnetic field was used to enhance the fluorescence excitation result. The enhancement effect was used for enhancing fluorescence excitation and emission when matched with the resonance condition. Alexa Fluor 635 was used as the target dye excited by 637-nm laser source on a configured photonic crystal enhanced fluorescence (PCEF) setup, and an initial PCEF enhancement factor was obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035292PMC
http://dx.doi.org/10.1186/s11671-016-1644-xDOI Listing

Publication Analysis

Top Keywords

nanofluidic biosensor
12
nanoreplica molding
12
photonic crystal
12
biosensor based
8
based nanoreplica
8
molding photonic
8
resonance wavelength
8
wavelength sensor
8
light source
8
amplified electromagnetic
8

Similar Publications

Cerebral Microbleeds and Amyloid Pathology Estimates From the Amyloid Biomarker Study.

JAMA Netw Open

January 2025

Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.

Importance: Baseline cerebral microbleeds (CMBs) and APOE ε4 allele copy number are important risk factors for amyloid-related imaging abnormalities in patients with Alzheimer disease (AD) receiving therapies to lower amyloid-β plaque levels.

Objective: To provide prevalence estimates of any, no more than 4, or fewer than 2 CMBs in association with amyloid status, APOE ε4 copy number, and age.

Design, Setting, And Participants: This cross-sectional study used data included in the Amyloid Biomarker Study data pooling initiative (January 1, 2012, to the present [data collection is ongoing]).

View Article and Find Full Text PDF

Olfactory-Inspired Separation-Sensing Nanochannel-Based Electronics for Wireless Sweat Monitoring.

ACS Nano

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

Human sweat has the potential to be sufficiently utilized for noninvasive monitoring. Given the complexity of sweat secretion, the sensitivity and selectivity of sweat monitoring should be further improved. Here, we developed an olfactory-inspired separation-sensing nanochannel-based electronic for sensitive and selective sweat monitoring, which was simultaneously endowed with interferent separation and target detection performances.

View Article and Find Full Text PDF

Harnessing concerted functions in confined environments: cascading enzymatic reactions in nanofluidic biosensors for sensitive detection of arginine.

Chem Commun (Camb)

January 2025

Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CONICET, Boulevard 113 y 64, 1900 La Plata, Argentina.

We developed an arginine-responsive biosensor by integrating cascade enzymatic reactions into nanochannels functionalized with weak polyelectrolytes, which serve as "reactive signal amplifiers." This approach enhances device performance and broadens the detectable analyte range by generating high local analyte concentrations. The nanofluidic biosensor operates rapidly (<5 minutes) with a low detection limit of 3 μM.

View Article and Find Full Text PDF

Biosensing plays a vital role in healthcare monitoring, disease detection, and treatment planning. In recent years, nanofluidic technology has been increasingly explored to be developed into lab-on-a-chip biosensing systems. Given now the possibility of fabricating geometrically defined nanometric channels that are commensurate with the size of many biomolecules, nanofluidic-based devices are likely to become a key technology for the analysis of various clinical biomarkers, including DNA (deoxyribonucleic acid) and proteins in liquid biopsies.

View Article and Find Full Text PDF

Inherited heat enhancement capabilities and their significance in the field of medical sciences and industry make nanofluids the focus of research nowadays. Furthermore, due to the remarkable advancements in bionanotechnology and its significance in biomedical fields such as drug delivery systems, cancer tumor therapy, bioimaging, and many others, it has emerged as a key research area. Contribution of cilia for the flow in ductus efferentes of human male reproductive tract is elaborated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!