Deletion of pilA, a Minor Pilin-Like Gene, from Xanthomonas citri subsp. citri Influences Bacterial Physiology and Pathogenesis.

Curr Microbiol

Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.

Published: December 2016

Type IV pili (Tfp) are widely distributed adhesins of bacterial surfaces. In plant pathogenic bacteria, Tfp are involved in host colonization and pathogenesis. Xanthomonas citri subsp. citri (Xcc) is the phytopathogen responsible for citrus canker disease. In this work, three Tfp structural genes, fimA, fimA1, and pilA from Xcc were studied. A pilA mutant strain from Xcc (XccΔpilA) was constructed and differences in physiological features, such as motilities, adhesion, and biofilm formation, were observed. A structural study of the purified Tfp fractions from Xcc wild-type and Xcc∆pilA showed that pilins are glycosylated in both strains and that FimA and FimA1 are the main structural components of the pili. Furthermore, smaller lesion symptoms and reduced bacterial growth were produced by Xcc∆pilA in orange plants compared to the wild-type strain. These results indicate that the minor pilin-like gene, pilA, is involved in Tfp performance during the infection process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-016-1138-1DOI Listing

Publication Analysis

Top Keywords

minor pilin-like
8
pilin-like gene
8
xanthomonas citri
8
citri subsp
8
subsp citri
8
fima fima1
8
tfp
5
deletion pila
4
pila minor
4
gene xanthomonas
4

Similar Publications

Article Synopsis
  • Cyanobacteria produce type IV pili, critical for movement, attachment, and natural transformation; the main component is the major pilin PilA1, with additional minor pilins present.
  • The study found that the minor pilin PilA5 is crucial for natural transformation but not for movement or clumping, while other minor pilins from the pilA9-slr2019 unit are essential for motility but not for transformation.
  • Gene expression analysis revealed that the levels of minor pilin genes change when the bacteria come into contact with surfaces, indicating their role in different pilus functions and the potential for forming aggregated structures.
View Article and Find Full Text PDF

Global biochemical and structural analysis of the type IV pilus from the Gram-positive bacterium .

J Biol Chem

April 2019

From the Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom,

Type IV pili (Tfp) are functionally versatile filaments, widespread in prokaryotes, that belong to a large class of filamentous nanomachines known as type IV filaments (Tff). Although Tfp have been extensively studied in several Gram-negative pathogens where they function as key virulence factors, many aspects of their biology remain poorly understood. Here, we performed a global biochemical and structural analysis of Tfp in a recently emerged Gram-positive model, In particular, we focused on the five pilins and pilin-like proteins involved in Tfp biology in We found that the two major pilins, PilE1 and PilE2, (i) follow widely conserved principles for processing by the prepilin peptidase PilD and for assembly into filaments; (ii) display only one of the post-translational modifications frequently found in pilins, a methylated N terminus; (iii) are found in the same heteropolymeric filaments; and (iv) are not functionally equivalent.

View Article and Find Full Text PDF

Deletion of pilA, a Minor Pilin-Like Gene, from Xanthomonas citri subsp. citri Influences Bacterial Physiology and Pathogenesis.

Curr Microbiol

December 2016

Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.

Type IV pili (Tfp) are widely distributed adhesins of bacterial surfaces. In plant pathogenic bacteria, Tfp are involved in host colonization and pathogenesis. Xanthomonas citri subsp.

View Article and Find Full Text PDF

In gram-negative bacteria, the assembly of type IV pilus (T4P) and the evolutionally related pseudopilus of type II secretion system involves specialized structural proteins called pilins and pseudopilins, respectively, and is dynamically regulated to promote bacterial pathogenesis. Previous studies have suggested that a structural "tip"-like hetero-complex formed through the interaction of at least three minor (pseudo) pilins plays an important role in this process, while some members of the pathogenic type IVb subfamily are known to have only one such minor pilin subunit whose function is still unknown. Here, we determined the crystal structure of the type IVb minor pilin CofB of colonization factor antigen/III from human enterotoxigenic Escherichia coli at 1.

View Article and Find Full Text PDF

Unlabelled: Enteropathogenic Escherichia coli (EPEC) remains a significant cause of infant diarrheal illness and associated morbidity and mortality in developing countries. EPEC strains are characterized by their ability to colonize the small intestines of their hosts by a multistep program involving initial loose attachment to intestinal epithelial cells followed by an intimate adhesion phase. The initial loose interaction of typical EPEC with host intestinal cells is mediated by bundle-forming pili (BFP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!