Amyloid-β peptide (Aβ) is considered a key protein in the pathogenesis of Alzheimer's disease because of its neurotoxicity, resulting in impaired synaptic function and memory. On the other hand, it was demonstrated that low (picomolar) concentrations of Aβ enhance synaptic plasticity and memory, suggesting that in the healthy brain, physiological Aβ concentrations are necessary for normal cognitive functions. In the present study, we found that Aβ (1-42) in concentrations of 10 pМ - 100nМ enhanced desensitization of the glycine-activated current in isolated CA3 pyramidal neurons and also reversibly suppressed its peak amplitude during short (600ms) co-application with agonist. The effect was most prominent at low glycine concentrations. When glycine receptors were activated by other receptor agonists - taurine and β-alanine, the changes of current kinetics and amplitudes induced by Aβ had a similar character. When Aβ (100 pM) was added to the bath solution, it caused, besides acceleration of desensitization, more pronounced reduction of peak current amplitude. This effect developed slowly, during a few minutes, and was more prominent at saturating concentrations of agonists. The results suggest that Aβ interacts with glycine receptors through three different mechanisms - by enhancing receptor desensitization, by rapid inhibition of the receptor, and also by means of a slowly developing inhibition of the amplitude of the current, possibly through intracellular mechanisms. The observed changes in the activity of glycine receptors induced by Aβ can lead to suppression of the tonic inhibition of hippocampal neurons mediated by extrasynaptic glycine receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2016.09.016 | DOI Listing |
J Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2100, Denmark.
NMDA receptor ligands have therapeutic potential in neurological and psychiatric disorders. We designed ()-3-(5-thienyl)carboxamido-2-aminopropanoic acid derivatives with nanomolar agonist potencies at NMDA receptor subtypes (GluN12/A-D). These compounds are superagonists at GluN1/2C compared to glycine and partial to full agonists at GluN1/2A and GluN1/2D but display functional antagonism at GluN1/2B due to low agonist efficacy.
View Article and Find Full Text PDFTher Apher Dial
January 2025
Department of Neurology, Wakayama Medical University, Wakayama, Japan.
Introduction: Progressive encephalomyelitis with rigidity and myoclonus (PERM) is characterized by brainstem symptoms, muscle rigidity, and myoclonus. While autoantibodies to inhibitory neurons have been associated with the pathology, about 30% of cases are negative for autoantibodies. There are few reported cases of antibody-negative PERM and its clinical course and prognosis are unknown.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Germany.
Background And Objectives: Autoantibodies (aAbs) against glycine receptors (GlyRs) are mainly associated with the rare neurologic diseases stiff person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM). GlyR aAbs are also found in other neurologic diseases such as epilepsy. The aAbs bind to different GlyR α-subunits and, more rarely, also to the GlyR β-subunit.
View Article and Find Full Text PDFDrug Res (Stuttg)
January 2025
Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
Tolerance to the antinociceptive effects of opioids is a major concern. Studies have shown that chronic use of non-steroidal anti-inflammatory (NSAIDs) causes significant tolerance and cross-tolerance to morphine. Chronic NSAIDs use can increase the risk of certain diseases, such as peptic ulcers, and exacerbate others, like heart failure.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
Department of Clinical Psychology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250117, China.
Glycine receptors (GlyRs) belong to the ligand-gated ion channel receptor superfamily and are widely distributed throughout the central nervous system. GlyRs are essential for maintaining visual, auditory, sensory and motor functions, and abnormalities in its structure and function can lead to various neurological disorders. This review aims to provide an extensive analysis of the structure, function and regulatory mechanisms of GlyRs, and evaluate its role in various central nervous system diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!