The novel technique for ceramic biomaterials surface characterisation was proposed. The examined bone substitute materials were two orthophosphates: hydroxyapatite, β-tricalcium phosphate and the mixture of these two - biphasic calcium phosphate. The aim of this work was characterisation of the ceramic biomaterials surface expressed via the values of parameters e, s, a, b, v considered in linear free energy relationship. The values of these parameters reflect the ability of stationary phase to occur in different types of interactions. The sorption phenomena occurring on the bone substitute materials surface are responsible for the process of the multiplication of the osteoblasts. Thus the detailed description of this phenomena may contribute to the better understanding of bone loss regeneration mechanism. The data required for characterisation by using LFER model was collected by means of inverse liquid chromatography with the use of five different mobile phases: 98% ethanol, ethanol/water (50/50), water, 0.2M NaCl and SBF. The determination of the ceramic orthophosphates surface properties in SBF solution allowed to observe the behaviour of biomaterials in "natural environment" - in living organism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2016.09.032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!