The majority of the targeted therapeutic agents in clinical use target proteins and protein function. Although DNA and RNA analyses have been used extensively to identify novel targets and patients likely to benefit from targeted therapies, these are indirect measures of the levels and functions of most therapeutic targets. More importantly, DNA and RNA analysis is ill-suited for determining the pharmacodynamic effects of target inhibition. Assessing changes in protein levels and function is the most efficient way to evaluate the mechanisms underlying sensitivity and resistance to targeted agents. Understanding these mechanisms is necessary to identify patients likely to benefit from treatment and to develop rational drug combinations to prevent or bypass therapeutic resistance. There is an urgent need for a robust approach to assess protein levels and protein function in model systems and across patient samples. While "shot gun" mass spectrometry can provide in-depth analysis of proteins across a limited number of samples, and emerging approaches such as multiple reaction monitoring have the potential to analyze candidate markers, mass spectrometry has not entered into general use because of the high cost, requirement of extensive analysis and support, and relatively large amount of material needed for analysis. Rather, antibody-based technologies, including immunohistochemistry, radioimmunoassays, enzyme-linked immunosorbent assays (ELISAs), and more recently protein arrays, remain the most common approaches for multiplexed protein analysis. Reverse-phase protein array (RPPA) technology has emerged as a robust, sensitive, cost-effective approach to the analysis of large numbers of samples for quantitative assessment of key members of functional pathways that are affected by tumor-targeting therapeutics. The RPPA platform is a powerful approach for identifying and validating targets, classifying tumor subsets, assessing pharmacodynamics, and identifying prognostic and predictive markers, adaptive responses and rational drug combinations in model systems and patient samples. Its greatest utility has been realized through integration with other analytic platforms such as DNA sequencing, transcriptional profiling, epigenomics, mass spectrometry, and metabolomics. The power of the technology is becoming apparent through its use in pathology laboratories and integration into trial design and implementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111873PMC
http://dx.doi.org/10.1053/j.seminoncol.2016.06.005DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
reverse-phase protein
8
protein arrays
8
protein function
8
dna rna
8
patients benefit
8
protein levels
8
rational drug
8
drug combinations
8
model systems
8

Similar Publications

Introduction: Identifying early risks of developing Alzheimer's disease (AD) is a major challenge as the number of patients with AD steadily increases and requires innovative solutions. Current molecular diagnostic modalities, such as cerebrospinal fluid (CSF) testing and positron emission tomography (PET) imaging, exhibit limitations in their applicability for large-scale screening. In recent years, there has been a marked shift toward the development of blood plasma-based diagnostic tests, which offer a more accessible and clinically viable alternative for widespread use.

View Article and Find Full Text PDF

The PRIDE database is the largest public data repository of mass spectrometry-based proteomics data and currently stores more than 40,000 data sets covering a wide range of organisms, experimental techniques, and biological conditions. During the past few years, PRIDE has seen a significant increase in the amount of submitted data-independent acquisition (DIA) proteomics data sets. This provides an excellent opportunity for large-scale data reanalysis and reuse.

View Article and Find Full Text PDF

The study by Cao aimed to identify early second-trimester biomarkers that could predict gestational diabetes mellitus (GDM) development using advanced proteomic techniques, such as Isobaric tags for relative and absolute quantitation isobaric tags for relative and absolute quantitation and liquid chromatography-mass spectrometry liquid chromatography-mass spectrometry. Their analysis revealed 47 differentially expressed proteins in the GDM group, with retinol-binding protein 4 and angiopoietin-like 8 showing significantly elevated serum levels compared to controls. Although these findings are promising, the study is limited by its small sample size ( = 4 per group) and lacks essential details on the reproducibility and reliability of the protein quantification methods used.

View Article and Find Full Text PDF

Ethnopharmacological Importance: Zhili decoction (ZLD) is a traditional Chinese medicine prescription for ulcerative colitis (UC). However, the mechanism by which ZLD exerts its therapeutic effects in the context of UC remains unclear.

Aim Of Study: The aim of this study was to investigate the effects of ZLD on the gut microbiota and related fecal metabolite levels using a mouse model of UC.

View Article and Find Full Text PDF

Background: Recently, environmental pollution has become a significant concern for human, animal, and environmental health, fitting within the "One Health" framework. Among the various environmental contaminants, per- and polyfluoroalkyl substances (PFASs) have gathered substantial attention due to their persistence, bioaccumulation, and adverse health effects. This study aimed to compare the levels of 12 PFASs in the fur, liver, and muscle of wild roe deer to evaluate the feasibility of using fur as a non-invasive biomonitoring matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!