Repurposing azithromycin has recently emerged as a promising strategy for the acute treatment of ischemic stroke. The mechanism of neuroprotection depends on the ability of this macrolide to promote polarization of microglia/macrophages towards beneficial M2 phenotypes. The immunomodulatory and anti-inflammatory effects of azithromycin, well documented in chronic inflammatory airway diseases, have been ascribed to the inhibition of the transcription factors nuclear factor (NF)-κB and activator protein (AP)-1. Since these inflammatory transcription factors are positively regulated by poly(ADP-ribose) polymerase (PARP)-1, an enzyme actively involved in ischemic brain injury, we have investigated whether the neuroprotective properties of azithromycin in ischemic stroke involve upstream modulation of PARP-1. Administration of a single dose of this macrolide antibiotic upon reperfusion reduced, to a similar extent in wild type and PARP-1 knockout mice, infarct brain damage produced by transient occlusion of the middle cerebral artery. Moreover, we demonstrated the lack of effects of azithromycin on PARP-dependent death of HeLa cells, as well as on activity of purified PARP-1 and PARP-2. Thus, azithromycin protects mice against ischemic stroke injury through a mechanism independent of PARP activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2016.09.030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!