We have found that Bloom's syndrome (BS) cells exhibit elevated levels of superoxide dismutase activity. Since SOD activity has been shown to reflect the intracellular superoxide (O2-) content, these results indicate that BS cells exhibit oxidative stress which ultimately results in DNA damage. Elevated sister chromatid exchange, the major cytological characteristic of BS, and superoxide dismutase induction were simulated in normal lymphoblastoid cells by treatment with compounds that increase the steady-state concentration of O2(-.). The sister chromatid exchange response of a BS lymphoid cell line was modulated through the control of the endogenous O2-. content. We therefore suggest that a major biochemical defect resulting from this genetic disorder is chronic over-production of the superoxide radical anion. The consequence of high O2-. levels concomitant with induced superoxide dismutase activity is the formation of enormous amounts of H2O2 which can apparently inactivate the enzymes responsible for its elimination. The inefficient removal of peroxide can result in high rates of sister chromatid exchange and chromosomal damage in BS cells and in normal cells treated with oxidation-reduction cycling compounds through the formation of highly reactive intermediary forms of active oxygen.

Download full-text PDF

Source

Publication Analysis

Top Keywords

superoxide dismutase
16
sister chromatid
12
chromatid exchange
12
bloom's syndrome
8
oxidative stress
8
cells exhibit
8
dismutase activity
8
o2- content
8
cells
5
superoxide
5

Similar Publications

Type 2 diabetes mellitus (T2DM) is an intricate disease correlated with many metabolic deregulations, including disordered glucose metabolism, oxidative stress, inflammation, and cellular apoptosis due to hepatic gluconeogenesis aberrations. However, there is no radical therapy to inhibit hepatic gluconeogenesis disturbances yet. We thus sought to probe the effectiveness and uncover the potential mechanism of quercetin (QCT) and silk sericin (SS) in mitigating hyperglycemia-induced hepatic gluconeogenesis disorder, which remains obscure.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic pollutants that pose a growing threat to environmental and human health. Soil acts as a long-term reservoir for PFAS, potentially impacting soil biodiversity and ecosystem function. Earthworms, as keystone species in soil ecosystems, are particularly vulnerable to PFAS exposure.

View Article and Find Full Text PDF

Biomolecular Microneedle Initiates FeO/MXene Heterojunction-Mediated Nanozyme-Like Reactions and Bacterial Ferroptosis to Repair Diabetic Wounds.

Adv Sci (Weinh)

January 2025

Department of Urology, Institute of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Reactive oxygen species (ROS) play a dual role in wound healing. They act as crucial signaling molecules and antimicrobial agents when present at moderate levels. However, excessive levels of ROS can hinder the healing process for individuals with diabetes.

View Article and Find Full Text PDF

Background: Polycystic Ovarian Syndrome (PCOS) is an endocrine disorder associated with increased risk of kidney and liver damage. Current treatments have shown contradictory outcomes, and their long-term use causes unwanted side effects. could serve as a complementary medicine to current PCOS treatments.

View Article and Find Full Text PDF

Introduction: Ulcerative colitis (UC) is an inflammatory bowel disease characterized by inflammation and ulceration of the digestive tract.

Methods: Photodynamic therapy (PDT) with a novel photosensitizer LD was used to treat UC rat models to explore the therapeutic effect and mechanism of LD-PDT on UC. 16S ribosomal RNA was used to detect the composition of Gut microbiota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!