Changes in RNA stability have an important impact in the gene expression regulation. Different methods based on the transcription blockage with RNA polymerase inhibitors or metabolic labeling of newly synthesized RNAs have been developed to evaluate RNA decay rates in cultured cell. Combined with techniques to measure transcript abundance genome-wide, these methods have been used to reveal novel features of the eukaryotic transcriptome. The stability of protein-coding mRNAs is in general closely associated to the physiological function of their encoded proteins, with short-lived mRNAs being significantly enriched among regulatory genes whereas genes associated with housekeeping functions are predominantly stable. Likewise, the stability of noncoding RNAs (ncRNAs) seems to reflect their functional role in the cell. Thus, investigating RNA stability can provide insights regarding the function of yet uncharacterized regulatory ncRNAs. In this chapter, we discuss the methodologies currently used to estimate RNA decay and outline an experimental protocol for genome-wide estimation of RNA stability of protein-coding and lncRNAs. This protocol details the transcriptional blockage of cultured cells with actinomycin D, followed by RNA isolation at different time points, the determination of transcript abundance by qPCR/DNA oligoarray hybridization, and the calculation of individual transcript half-lives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-4035-6_11 | DOI Listing |
Sci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.
View Article and Find Full Text PDFCell Death Discov
January 2025
School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
Methyltransferase-like 1 (METTL1)-mediated m7G modification is a common occurrence in various RNA species, including mRNAs, tRNAs, rRNAs, and miRNAs. Recent evidence suggests that this modification is linked to the development of several cancers, making it a promising target for cancer therapy. However, the specific role of m7G modification in cutaneous squamous cell carcinoma (cSCC) is not well understood.
View Article and Find Full Text PDFCardiovasc Res
January 2025
Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China.
Aims: Decrease in repolarizing K+ currents, particularly the fast component of transient outward K+ current (Ito,f), prolongs action potential duration (APD) and predisposes the heart to ventricular arrhythmia during cardiac hypertrophy. Histone deacetylases (HDACs) have been suggested to participate in the development of cardiac hypertrophy, and class I HDAC inhibition has been found to attenuate pathological remodeling. This study investigated the potential therapeutic effects of HDAC2 on ventricular arrhythmia in pressure overload-induced cardiac hypertrophy.
View Article and Find Full Text PDFMethods Enzymol
January 2025
Life Science, Bar Ilan University, Ramat Gan, Israel. Electronic address:
Saccharomyces cerevisiae, a model eukaryotic organism with a rich history in research and industry, has become a pivotal tool for studying Adenosine Deaminase Acting on RNA (ADAR) enzymes despite lacking these enzymes endogenously. This chapter reviews the diverse methodologies harnessed using yeast to elucidate ADAR structure and function, emphasizing its role in advancing our understanding of RNA editing. Initially, Saccharomyces cerevisiae was instrumental in the high-yield purification of ADARs, addressing challenges associated with enzyme stability and activity in other systems.
View Article and Find Full Text PDFJ Adv Res
January 2025
Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China; Center of Clinical Oncology, The Afliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002 Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004 Jiangsu, China. Electronic address:
Introduction: Hypericin (HP), a natural photosensitizer, has demonstrated great efficacy in photodynamic therapy (PDT) for cancer treatment. In addition to the induction of apoptosis and necrosis through reactive oxygen species (ROS) generation, the therapeutic mechanisms and targets of PDT-HP remain unknown.
Objectives: To investigate the direct targets and mechanisms of action of photoactivated hypericin in the inhibition of triple-negative breast cancer (TNBC).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!