Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cognitive reserve (CR) is known to modulate the clinical features of Alzheimer's disease (AD). This concept may be critical for the development of non-pharmacological interventions able to slow down patients' cognitive decline in the absence of disease-modifying treatments. We aimed at identifying the neurobiological substrates of CR (i.e., neural reserve) over the transition between normal aging and AD, by assessing the underlying brain networks and their topological properties. A cohort of 154 participants (n = 68 with AD, n = 61 with amnestic mild cognitive impairment (aMCI), and 25 healthy subjects) underwent resting-state functional MRI and neuropsychological testing. Within each group, participants were classified as having high or low CR, and functional connectivity measures were compared, within group, between high and low CR individuals. Network-based statistics and topological network properties derived from graph theory were explored. Connectivity differences between high and low CR were evident only for aMCI patients, with participants with high CR showing a significant increase of connectivity in a network involving mainly fronto-parietal nodes. Conversely, they showed significantly decreased connectivity in a network involving fronto-temporo-cerebellar nodes. Consistently, changes to topological measures were observed in either direction, and were associated with measures of global cognitive function. These findings support the hypothesis that CR impacts on neurodegenerative process in the early phase of AD only. In addition, they fit with the existence of a "neural reserve", characterized by specific neural networks and their efficiency. It remains to be demonstrated whether interventions later in life can modulate this "neural reserve".
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-160735 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!