Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394863PMC
http://dx.doi.org/10.3324/haematol.2016.144725DOI Listing

Publication Analysis

Top Keywords

innate lymphoid
4
lymphoid cells
4
cells expanded
4
expanded functionally
4
functionally altered
4
altered chronic
4
chronic lymphocytic
4
lymphocytic leukemia
4
innate
1
cells
1

Similar Publications

Cutaneous innate lymphoid populations drive IL-17A-mediated immunity in Nannizzia gypsea dermatophytosis.

J Invest Dermatol

December 2024

Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) CONICET, ARGENTINA. Electronic address:

Fungal skin infections significantly contribute to the global human disease burden, yet our understanding of cutaneous immunity against dermatophytes remains limited. Previously, we developed a model of epicutaneous infection with Microsporum canis in C57BL/6 mice, which highlighted the critical role of IL-17RA signaling in anti-dermatophyte defenses. Here, we expanded our investigation to the human pathogen Nannizzia gypsea and demonstrated that skin γδTCRint and CD8/CD4 double-negative βTCR+ T cells are the principal producers of IL-17A during dermatophytosis.

View Article and Find Full Text PDF

Cell therapy with human IL-10-producing ILC2s limits xenogeneic graft-versus-host disease by inhibiting pathogenic T cell responses.

Cell Rep

December 2024

Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada. Electronic address:

Interleukin-10 (IL-10)-producing group 2 innate lymphoid cells (ILC2) regulate inflammatory immune responses, yet their therapeutic potential remains largely unexplored. Here, we demonstrate that cell therapy with human ILC2 inhibits pathogenic T cell responses in humanized mouse models of graft-versus-host disease (GVHD), resulting in reduced GVHD severity and improved overall survival without limiting the graft-versus-leukemia effect. ILC2 conferred superior protection from GVHD than IL-10 ILC2s, and blocking IL-10 and IL-4 abrogated ILC2 protective effects, indicating that these cytokines are important for the protective effects of ILC2.

View Article and Find Full Text PDF

Intraepithelial type 1 innate lymphoid cells (ieILC1s) are tissue-resident lymphocytes in the microenvironment of head and neck squamous cell carcinoma. Here, we evaluate how these cells influence T-cell trafficking to tumors. We generated cytotoxic ieILC1-like cells from natural killer (NK) cells in vitro.

View Article and Find Full Text PDF

The factors that determine the appearance of the different pathologic forms associated with bovine paratuberculosis are not fully understood, but new research suggests a critical role of innate immunity. Toll-like receptors (TLRs) trigger the recognition of invading pathogens by innate immune cells and the onset of specific immune responses. The aim of this work was to assess, immunohistochemically, the expression of TLR1, TLR2, TLR4, and TLR9 in intestinal samples of 20 cows showing different types of paratuberculous lesions: uninfected controls, focal lesions, paucibacillary, and multibacillary diffuse forms.

View Article and Find Full Text PDF

Augmented IFNγ producing ILC1 and IL 17 producing ILC3 in pemphigus vulgaris: Plausible therapeutic target.

Cell Immunol

December 2024

Department of Biochemistry, AIIMS, New Delhi, India. Electronic address:

Innate Lymphoid cells (ILCs) are innate counterparts of helper T cells. Although low in number, they have proven to play major roles in many autoimmune diseases. In Pemphigus Vulgaris (PV), the gaps in the knowledge of functional role of ILCs remain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!