We demonstrate a surface-normal coupled tunable hybrid silicon laser array for the first time using passively-aligned, high-accuracy flip chip bonding. A 2x6 III-V reflective semiconductor optical amplifier (RSOA) array with integrated total internal reflection mirrors is bonded to a CMOS SOI chip with grating couplers and silicon ring reflectors to form a tunable hybrid external-cavity laser array. Waveguide-coupled wall plug efficiency (wcWPE) of 2% and output power of 3 mW has been achieved for all 12 lasers. We further improved the performance by reducing the thickness of metal/dielectric stacks and achieved 10mW output power and 5% wcWPE with the same integration techniques. This non-invasive, one-step back end of the line (BEOL) integration approach provides a promising solution to high density laser sources for future large-scale photonic integrated circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.021454DOI Listing

Publication Analysis

Top Keywords

laser array
12
hybrid external-cavity
8
external-cavity laser
8
tunable hybrid
8
output power
8
efficient tunable
4
tunable flip-chip-integrated
4
flip-chip-integrated iii-v/si
4
iii-v/si hybrid
4
laser
4

Similar Publications

We develop fs laser-fabricated asymmetric couplers and zig-zag arrays consisting of single- and two-mode waveguides with bipartite Kerr nonlinearity in borosilicate (BK7) glass substrates. The fundamental mode ( orbital) is near resonance with the neighboring higher-order orbital, causing efficient light transfer at low power. Due to Kerr nonlinearity, the coupler works as an all-optical switch between and orbitals.

View Article and Find Full Text PDF

Ppb-Level Photoacoustic Detection of Chloroform Using Four-Microphone Array.

Anal Chem

January 2025

International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.

The photoacoustic spectroscopy (PAS) system commonly enhances the efficiency of optical-acoustic-electrical energy conversion by increasing the laser power, optimizing the resonance characteristics of the photoacoustic cell (PAC), and improving the sensitivity of acoustic sensors. However, conventional systems using a single-microphone or a dual-microphone differential setup for point sampling of the photoacoustic signal fail to account for its spatial distribution, leading to a loss of spatial gain. Drawing on microphone array theory derived from sonar technology, this study, for the first time, presents a PAS sensing system based on a four-microphone array, which is applied to detect chloroform gas.

View Article and Find Full Text PDF

Moisture-Electric Generators Working in Subzero Environments Based on Laser-Engraved Hygroscopic Hydrogel Arrays.

ACS Nano

January 2025

State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China.

Moisture-electric generators (MEGs) generate power by adsorbing water from the air. However, their performance at low temperatures is hindered due to icing. In the present work, MEG arrays are developed by laser engraving techniques and a modulated low-temperature hydrogel as the absorbent material.

View Article and Find Full Text PDF

Large-scale high uniform optoelectronic synapses array for artificial visual neural network.

Microsyst Nanoeng

January 2025

State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Ministry of Education, 100081, Beijing, China.

Recently, the biologically inspired intelligent artificial visual neural system has aroused enormous interest. However, there are still significant obstacles in pursuing large-scale parallel and efficient visual memory and recognition. In this study, we demonstrate a 28 × 28 synaptic devices array for the artificial visual neuromorphic system, within the size of 0.

View Article and Find Full Text PDF

Background: Chemical derivatization is a common technique in liquid chromatography-mass spectrometry (LC-MS) metabolomics used to improve the ionizability and chromatographic properties of metabolites in complex biological samples. This process facilitates better detection and separation of a wide array of compounds. The reagent 2-(4-boronobenzyl) isoquinolin-2-ium bromide (BBII), developed as a glucose labeling reagent for matrix-assisted laser desorption/ionization MS, enhances ionization for glucose and other hydroxyl metabolites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!