In this paper, a novel optical encoder enabling the simultaneous measurement of displacement and the position of precision stages is presented. The encoder is composed of an improved single-track scale grating and a compact two-probe reading head. In the scale grating, multiple reference codes are physically superimposed onto the incremental grooves, in contrast to conventional designs, where an additional track is necessary. The distribution of the reference codes follows a specific mathematical algorithm. For the reading head, a two-probe structure is designed to identify the discrete reference codes by means of the superimposition of the codes with a stationary mask and to read the continuous incremental grooves by means of a grating interferometry, respectively. A prototype encoder was designed, constructed and evaluated, and experimental results show that the distance code precision achieved is 0.5 μm, while the linearity error of the linear displacement measurement is less than 0.06%.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.021378DOI Listing

Publication Analysis

Top Keywords

scale grating
12
reference codes
12
optical encoder
8
precision stages
8
reading head
8
incremental grooves
8
two-probe optical
4
encoder
4
encoder absolute
4
absolute positioning
4

Similar Publications

A physical optics formulation of Bloch waves and its application to 4D STEM, 3D ED and inelastic scattering simulations.

Acta Crystallogr A Found Adv

March 2025

Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom.

Bloch waves are often used in dynamical diffraction calculations, such as simulating electron diffraction intensities for crystal structure refinement. However, this approach relies on matrix diagonalization and is therefore computationally expensive for large unit cell crystals. Here Bloch wave theory is re-formulated using the physical optics concepts underpinning the multislice method.

View Article and Find Full Text PDF

Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.

View Article and Find Full Text PDF

Advancing neutron imaging techniques to highest resolution with fluorescent nuclear track detectors.

Sci Rep

January 2025

High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, 351-0198, Japan.

Neutron imaging is a nondestructive and noninvasive inspection technique with a wide range of potential applications. However, the fundamentals of this technique still need to be improved, one of which involves achieving micrometer scale or even better resolution, which is a challenging task. Recently, a high-resolution neutron imaging device based on fine-grained nuclear emulsions was developed.

View Article and Find Full Text PDF

Surface plasmons offer a promising avenue in the pursuit of swift and localized manipulation of magnetism for advanced magnetic storage and information processing technology. However, observing and understanding spatiotemporal interactions between surface plasmons and spins remains challenging, hindering optimal optical control of magnetism. Here, we demonstrate the spatiotemporal observation of patterned ultrafast demagnetization dynamics in permalloy mediated by propagating surface plasmon polaritons with sub-picosecond time- and sub-μm spatial- scales by employing Lorentz ultrafast electron microscopy combined with excitation through transient optical gratings.

View Article and Find Full Text PDF

Dynamic transverse mode instability (TMI) has become one of the primary limitations for power scaling of high-power fiber lasers. Experimental evidence has shown that static mode degradation can suppress the dynamic TMI effect. This study reveals the physical mechanisms behind the mitigation of dynamic TMI in two-mode fiber lasers through static mode degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!