Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements.

Phys Rev Lett

Dipartimento di Fisica, Università della Calabria, Via P. Bucci, Cubo 30C, I-87036 Rende (CS), Italy.

Published: September 2016

Among their amazing properties, graphene and related low-dimensional materials show quantized charge-density fluctuations-known as plasmons-when exposed to photons or electrons of suitable energies. Graphene nanoribbons offer an enhanced tunability of these resonant modes, due to their geometrically controllable band gaps. The formidable effort made over recent years in developing graphene-based technologies is however weakened by a lack of predictive modeling approaches that draw upon available ab initio methods. An example of such a framework is presented here, focusing on narrow-width graphene nanoribbons, organized in periodic planar arrays. Time-dependent density-functional calculations reveal unprecedented plasmon modes of different nature at visible to infrared energies. Specifically, semimetallic (zigzag) nanoribbons display an intraband plasmon following the energy-momentum dispersion of a two-dimensional electron gas. Semiconducting (armchair) nanoribbons are instead characterized by two distinct intraband and interband plasmons, whose fascinating interplay is extremely responsive to either injection of charge carriers or increase in electronic temperature. These oscillations share some common trends with recent nanoinfrared imaging of confined edge and surface plasmon modes detected in graphene nanoribbons of 100-500 nm width.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.116801DOI Listing

Publication Analysis

Top Keywords

graphene nanoribbons
16
plasmon modes
12
periodic planar
8
nanoribbons
6
graphene
5
plasmon
4
modes graphene
4
nanoribbons periodic
4
planar arrangements
4
arrangements amazing
4

Similar Publications

The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.

View Article and Find Full Text PDF

Synthesis of 2D NiCo-MOF/GO/CNTs flexible films for high-performance supercapacitors.

Soft Matter

January 2025

Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.

Article Synopsis
  • Researchers developed flexible hybrid films using nickel-cobalt metal-organic frameworks (2D NiCo-MOF), graphene oxide (GO), and carbon nanotubes (CNTs) as supercapacitor electrode materials via vacuum filtration.
  • The optimal mass ratio of these materials is 2:1:0.5, leading to a high specific capacitance of 40.3 F/g and impressive cycling stability, with 82.8% capacitance retention after 5000 cycles.
  • The films maintain flexibility even after multiple bends and can power an LED when connected in series, showcasing their practical application potential.
View Article and Find Full Text PDF

Exploring the Electronic and Mechanical Properties of TPDH Nanotube: Insights from Ab Initio and Classical Molecular Dynamics Simulations.

ACS Omega

December 2024

Electronic Structure and Atomistic Dynamics Interdisciplinary Group (GEEDAI), Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Avenida dos Estados 5001, 09210-580 Santo Andre, Sao Paulo, Brazil.

Tetra-Penta-Deca-Hexa graphene (TPDH) is a new two-dimensional (2D) carbon allotrope with attractive electronic and mechanical properties. It is composed of tetragonal, pentagonal, decagonal and hexagonal carbon rings. When TPDH graphene is sliced into quasi-one-dimensional (1D) structures such as nanoribbons, it exhibits a range of behaviors, from semimetallic to semiconducting.

View Article and Find Full Text PDF

Eco-friendly cellulose paper composites: A sustainable solution for EMI shielding and green engineering applications.

Int J Biol Macromol

December 2024

International and Inter-University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala 686 560, India; School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O.Box 17011, Doornfontein, 2028 Johannesburg, South Africa; Trivandrum Engineering, Science and Technology (TrEST) Research Park, Trivandrum 695016, India; School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala India 686560. Electronic address:

Cellulose paper-based composites represent a promising and sustainable alternative for electromagnetic interference (EMI) shielding applications. Derived from renewable and biodegradable cellulose fibers, these composites are enhanced with conductive fillers namely carbon nanotubes, graphene, or metallic nanoparticles, achieving efficient EMI shielding while maintaining environmental friendliness. Their lightweight, flexible nature, and mechanical robustness make them ideal for diverse applications, including wearable electronics, flexible circuits, and green electronics.

View Article and Find Full Text PDF

Ultrafine metal-organic framework @ graphitic carbon with MoS-CNTs nanocomposites as carbon-based electrochemical sensor for ultrasensitive detection of catechin in beverages.

Mikrochim Acta

December 2024

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.

GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS-MWCNTs (MoS-CNTs) were produced via the in situ synthesis of MoS within multi-walled carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!